当前位置: 首页 > news >正文

R语言生存分析(机器学习)(1)——GBM(梯度提升机)

GBM是一种集成学习算法,它结合了多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBM使用“Boosting”的技术来训练弱学习器,这种技术是一个迭代的过程,每一轮都会关注之前轮次中预测效果较差的样本,以便更专注地对它们进行建模。这有助于逐步减少整体预测误差。

#1 清空
rm(list = ls())
gc()
#2 导入包
library("survival")
library("gbm")
help(package="gbm")
#3 拆分训练集和测试集
data<-lung
set.seed(123)
train <- sample(1:nrow(data), round(nrow(data) * 0.70))
train <- data[train, ]
test <- data[-train, ]
#4 建立模型
set.seed(123)
gbm_model <- gbm(Surv(time, status) ~ .,#建模distribution = "coxph",#分布data = train,#数据n.trees = 5000,#树数量shrinkage = 0.1,#学习率或步长减少interaction.depth = 5,#每棵树的最大深度n.minobsinnode = 10,#最小观测次数在树的终末节点cv.folds = 10#交叉验证次数
)
plot(gbm_model)#通过“积分”其他变量,绘制所选变量的边际效应。
summary(gbm_model)#绘图,从高到低显示因素的相对重要性

 

#5 预测
best.iter <- gbm.perf(gbm_model, plot.it = TRUE, method = "cv")
pred_train <- predict(gbm_model, train, n.trees = best.iter)
pred_test <- predict(gbm_model, test, n.trees = best.iter)
#6 模型评价
#计算ROC
library(survivalROC)
roc_area <- survivalROC(Stime=train$time,status=train$status,marker =pred_train,predict.time=100,method="KM")
# 计算C-index
Hmisc::rcorr.cens(-pred_train, Surv(train$time, train$status))
Hmisc::rcorr.cens(-pred_test, Surv(test$time, test$status))
#7 计算生存概率
# 计算累积
CH<- basehaz.gbm(train$time, train$status, pred_train, t.eval = 300, cumulative = TRUE)
exp(-exp(pred_test)*CH)

相关文章:

R语言生存分析(机器学习)(1)——GBM(梯度提升机)

GBM是一种集成学习算法&#xff0c;它结合了多个弱学习器&#xff08;通常是决策树&#xff09;来构建一个强大的预测模型。GBM使用“Boosting”的技术来训练弱学习器&#xff0c;这种技术是一个迭代的过程&#xff0c;每一轮都会关注之前轮次中预测效果较差的样本&#xff0c;…...

k8s和docker简单介绍

当涉及到容器技术和容器编排时&#xff0c;Docker和Kubernetes是两个重要的概念。我将更详细地介绍它们以及它们之间的关系。 Docker&#xff1a; Docker是一种容器化技术&#xff0c;它允许你将应用程序及其依赖项打包到一个称为"容器"的封闭环境中。每个容器都包…...

Lua学习记录

Lua基础了解 Lua的注释通过 (-- 单行注释&#xff0c;--[[ ]] 多行注释)可以不加&#xff1b; 多个变量赋值&#xff0c;按顺序赋值&#xff0c;没有则为nil&#xff1b; function的简单用法&#xff0c;多个返回值配合多重赋值&#xff0c;以end为结束标志 Lua下标从1开始&…...

三分钟完美解决你的C盘内存过大爆红

一、清理回收站 二、清理桌面 建议一 不要在桌面放太多图标或者文件会占用过多的内存,可以放到其他盘建议二、 将位置移动到别的盘 三、手动删除下载文件与缓存文件 日常使用中会通过Windows下载各种文件资料到电脑中&#xff0c;它默认也是直接下载在C盘中的。如果我们在以…...

C++ - equal(比较两个vector元素)

C标准库的std::equal函数。这个函数用于比较两个范围的元素是否相等。 在使用std::equal函数时&#xff0c;您需要提供两个范围的迭代器&#xff0c;以及一个可选的谓词函数&#xff08;predicate&#xff09;。函数会比较第一个范围内的元素和第二个范围内的元素是否相等。如果…...

多线程:线程池

线程池 提前创建多个线程放入线程池中&#xff0c;使用时直接获取&#xff0c;使用完直接放入池中&#xff1b;可以避免频繁创建销毁&#xff0c;实现重复利用&#xff0c;类似生活中的公共交通工具。好处&#xff1a;提高相应速度&#xff1b;降低资源消耗&#xff1b;便于线…...

9.3.2.2网络原理(传输层TCP)

TCP全部细节参考RFC标准文档 一.TCP特点: 有连接,可靠传输,面向字节流,全双工. 二.TCP数据报: 1.端口号是传输层的重要概念. 2.TCP的报头是变长的(UDP是固定的8字节),大小存在4位首部长度中,用4个bit位(0~15)表示长度单位是4字节.(TCP报头最大长度是60字节,前面20字节是固定…...

ssm+mybatis无法给带有下划线属性赋值问题

原因&#xff1a;mybaitis根据配置&#xff0c;将有下划线的字段名改为了驼峰格式。 具体见&#xff1a;ssmmybatis无法给带有下划线属性赋值问题&#xff0c;无法获取数据库带下划线的字段值 - 开发者博客 解决方式&#xff1a; 直接将实体类中的下划线去掉返回值使用resul…...

学习笔记-JVM监控平台搭建

SpringBoot Actuator 1 引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId> </dependency>2 开启配置 # 暴露所有的监控点【含Prometheus】 management.endpoin…...

使用css实现时间线布局(TimeLine)

前言 在使用uni-app开发微信小程序过程中&#xff0c;遇到了时间轴布局&#xff0c;由于每项的内容高度不一致&#xff0c;使用uniapp自带的扩展组件uni-steps&#xff0c;样式布局无法对齐竖线&#xff0c;于是自己造轮子&#xff0c;完成特殊的布局。显示效果如下&#xff1…...

深入浅出 栈和队列(附加循环队列、双端队列)

栈和队列 一、栈 概念与特性二、Stack 集合类及模拟实现1、Java集合中的 Stack2、Stack 模拟实现 三、栈、虚拟机栈、栈帧有什么区别&#xff1f;四、队列 概念与特性五、Queue集合类及模拟实现1、Queue的底层结构&#xff08;1&#xff09;顺序结构&#xff08;2&#xff09;链…...

前端基础(二)

前言&#xff1a;前端开发框架——Vue框架学习。 准备工作&#xff1a;添加Vue devtools扩展工具 具体可查看下面的这篇博客 添加vue devtools扩展工具添加后F12不显示Vue图标_MRJJ_9的博客-CSDN博客 Vue官方学习文档 Vue.js - 渐进式 JavaScript 框架 | Vue.js MVVM M…...

ORB-SLAM2学习笔记7之System主类和多线程

文章目录 0 引言1 整体框架1.1 整体流程 2 System主类2.1 成员函数2.2 成员变量 3 多线程3.1 ORB-SLAM2中的多线程3.2 加锁 0 引言 ORB-SLAM2是一种基于特征的视觉SLAM&#xff08;Simultaneous Localization and Mapping&#xff09;系统&#xff0c;它能够从单个、双目或RBG…...

gin的占位符:和通配符*

1、用法 在 Gin 路由中&#xff0c;可以使用一个通配符&#xff08;*&#xff09;或一个占位符&#xff08;:&#xff09;来捕获 URL 的一部分。 r.GET("/royal/:id", func(c *gin.Context) {id : c.Param("id")//fmt.Println("into :id")c.Str…...

【量化课程】08_2.深度学习量化策略基础实战

文章目录 1. 深度学习简介2. 常用深度学习模型架构2.1 LSTM 介绍2.2 LSTM在股票预测中的应用 3. 模块分类3.1 卷积层3.2 池化层3.3 全连接层3.4 Dropout层 4. 深度学习模型构建5. 策略实现 1. 深度学习简介 深度学习是模拟人脑进行分析学习的神经网络。 2. 常用深度学习模型架…...

12-数据结构-数组、矩阵、广义表

数组、矩阵、广义表 目录 数组、矩阵、广义表 一、数组 二.矩阵 三、广义表 一、数组 这一章节理解基本概念即可。数组要看清其实下标是多少&#xff0c;并且二维数组&#xff0c;存取数据&#xff0c;要先看清楚是按照行存还是按列存&#xff0c;按行则是正常一行一行的去读…...

Idea 反编译jar包

实际项目中&#xff0c;有时候会需要更改jar包源码来达到业务需求&#xff0c;本文章将介绍一下如何通过Idea来进行jar反编译 1、Idea安装decompiler插件 2、找到decompiler插件文件夹 decompiler插件文件夹路径为&#xff1a;idea安装路径/plugins/java-decompiler/lib 3、…...

【Git】安装以及基本操作

目录 一、初识Git二、 在Linux底下安装Git一&#xff09;centOS二&#xff09;Ubuntu 三、 Git基本操作一&#xff09; 创建本地仓库二&#xff09;配置本地仓库三&#xff09;认识工作区、暂存区、版本库四&#xff09;添加文件五&#xff09;查看.git文件六&#xff09;修改文…...

Spring创建Bean的过程(2)

上一节介绍了Spring创建过程中的两个重要的接口&#xff0c;那么它们在创建Bean的过程中起到了什么作用呢&#xff1f;接下来请看&#xff1a; Spring有三种方式寻找 xml 配置文件&#xff0c;根据 xml 文件内容来构建 ApplicationContext&#xff0c;分别为ClassPathXmlAppli…...

Linux 终端操作命令(2)内部命令

Linux 终端操作命令 也称Shell命令&#xff0c;是用户与操作系统内核进行交互的命令解释器&#xff0c;它接收用户输入的命令并将其传递给操作系统进行执行&#xff0c;可分为内部命令和外部命令。内部命令是Shell程序的一部分&#xff0c;而外部命令是独立于Shell的可执行程序…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...