R语言生存分析(机器学习)(1)——GBM(梯度提升机)
GBM是一种集成学习算法,它结合了多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBM使用“Boosting”的技术来训练弱学习器,这种技术是一个迭代的过程,每一轮都会关注之前轮次中预测效果较差的样本,以便更专注地对它们进行建模。这有助于逐步减少整体预测误差。
#1 清空
rm(list = ls())
gc()
#2 导入包
library("survival")
library("gbm")
help(package="gbm")
#3 拆分训练集和测试集
data<-lung
set.seed(123)
train <- sample(1:nrow(data), round(nrow(data) * 0.70))
train <- data[train, ]
test <- data[-train, ]
#4 建立模型
set.seed(123)
gbm_model <- gbm(Surv(time, status) ~ .,#建模distribution = "coxph",#分布data = train,#数据n.trees = 5000,#树数量shrinkage = 0.1,#学习率或步长减少interaction.depth = 5,#每棵树的最大深度n.minobsinnode = 10,#最小观测次数在树的终末节点cv.folds = 10#交叉验证次数
)
plot(gbm_model)#通过“积分”其他变量,绘制所选变量的边际效应。
summary(gbm_model)#绘图,从高到低显示因素的相对重要性


#5 预测
best.iter <- gbm.perf(gbm_model, plot.it = TRUE, method = "cv")
pred_train <- predict(gbm_model, train, n.trees = best.iter)
pred_test <- predict(gbm_model, test, n.trees = best.iter)
#6 模型评价
#计算ROC
library(survivalROC)
roc_area <- survivalROC(Stime=train$time,status=train$status,marker =pred_train,predict.time=100,method="KM")
# 计算C-index
Hmisc::rcorr.cens(-pred_train, Surv(train$time, train$status))
Hmisc::rcorr.cens(-pred_test, Surv(test$time, test$status))
#7 计算生存概率
# 计算累积
CH<- basehaz.gbm(train$time, train$status, pred_train, t.eval = 300, cumulative = TRUE)
exp(-exp(pred_test)*CH)
相关文章:
R语言生存分析(机器学习)(1)——GBM(梯度提升机)
GBM是一种集成学习算法,它结合了多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBM使用“Boosting”的技术来训练弱学习器,这种技术是一个迭代的过程,每一轮都会关注之前轮次中预测效果较差的样本,…...
k8s和docker简单介绍
当涉及到容器技术和容器编排时,Docker和Kubernetes是两个重要的概念。我将更详细地介绍它们以及它们之间的关系。 Docker: Docker是一种容器化技术,它允许你将应用程序及其依赖项打包到一个称为"容器"的封闭环境中。每个容器都包…...
Lua学习记录
Lua基础了解 Lua的注释通过 (-- 单行注释,--[[ ]] 多行注释)可以不加; 多个变量赋值,按顺序赋值,没有则为nil; function的简单用法,多个返回值配合多重赋值,以end为结束标志 Lua下标从1开始&…...
三分钟完美解决你的C盘内存过大爆红
一、清理回收站 二、清理桌面 建议一 不要在桌面放太多图标或者文件会占用过多的内存,可以放到其他盘建议二、 将位置移动到别的盘 三、手动删除下载文件与缓存文件 日常使用中会通过Windows下载各种文件资料到电脑中,它默认也是直接下载在C盘中的。如果我们在以…...
C++ - equal(比较两个vector元素)
C标准库的std::equal函数。这个函数用于比较两个范围的元素是否相等。 在使用std::equal函数时,您需要提供两个范围的迭代器,以及一个可选的谓词函数(predicate)。函数会比较第一个范围内的元素和第二个范围内的元素是否相等。如果…...
多线程:线程池
线程池 提前创建多个线程放入线程池中,使用时直接获取,使用完直接放入池中;可以避免频繁创建销毁,实现重复利用,类似生活中的公共交通工具。好处:提高相应速度;降低资源消耗;便于线…...
9.3.2.2网络原理(传输层TCP)
TCP全部细节参考RFC标准文档 一.TCP特点: 有连接,可靠传输,面向字节流,全双工. 二.TCP数据报: 1.端口号是传输层的重要概念. 2.TCP的报头是变长的(UDP是固定的8字节),大小存在4位首部长度中,用4个bit位(0~15)表示长度单位是4字节.(TCP报头最大长度是60字节,前面20字节是固定…...
ssm+mybatis无法给带有下划线属性赋值问题
原因:mybaitis根据配置,将有下划线的字段名改为了驼峰格式。 具体见:ssmmybatis无法给带有下划线属性赋值问题,无法获取数据库带下划线的字段值 - 开发者博客 解决方式: 直接将实体类中的下划线去掉返回值使用resul…...
学习笔记-JVM监控平台搭建
SpringBoot Actuator 1 引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId> </dependency>2 开启配置 # 暴露所有的监控点【含Prometheus】 management.endpoin…...
使用css实现时间线布局(TimeLine)
前言 在使用uni-app开发微信小程序过程中,遇到了时间轴布局,由于每项的内容高度不一致,使用uniapp自带的扩展组件uni-steps,样式布局无法对齐竖线,于是自己造轮子,完成特殊的布局。显示效果如下࿱…...
深入浅出 栈和队列(附加循环队列、双端队列)
栈和队列 一、栈 概念与特性二、Stack 集合类及模拟实现1、Java集合中的 Stack2、Stack 模拟实现 三、栈、虚拟机栈、栈帧有什么区别?四、队列 概念与特性五、Queue集合类及模拟实现1、Queue的底层结构(1)顺序结构(2)链…...
前端基础(二)
前言:前端开发框架——Vue框架学习。 准备工作:添加Vue devtools扩展工具 具体可查看下面的这篇博客 添加vue devtools扩展工具添加后F12不显示Vue图标_MRJJ_9的博客-CSDN博客 Vue官方学习文档 Vue.js - 渐进式 JavaScript 框架 | Vue.js MVVM M…...
ORB-SLAM2学习笔记7之System主类和多线程
文章目录 0 引言1 整体框架1.1 整体流程 2 System主类2.1 成员函数2.2 成员变量 3 多线程3.1 ORB-SLAM2中的多线程3.2 加锁 0 引言 ORB-SLAM2是一种基于特征的视觉SLAM(Simultaneous Localization and Mapping)系统,它能够从单个、双目或RBG…...
gin的占位符:和通配符*
1、用法 在 Gin 路由中,可以使用一个通配符(*)或一个占位符(:)来捕获 URL 的一部分。 r.GET("/royal/:id", func(c *gin.Context) {id : c.Param("id")//fmt.Println("into :id")c.Str…...
【量化课程】08_2.深度学习量化策略基础实战
文章目录 1. 深度学习简介2. 常用深度学习模型架构2.1 LSTM 介绍2.2 LSTM在股票预测中的应用 3. 模块分类3.1 卷积层3.2 池化层3.3 全连接层3.4 Dropout层 4. 深度学习模型构建5. 策略实现 1. 深度学习简介 深度学习是模拟人脑进行分析学习的神经网络。 2. 常用深度学习模型架…...
12-数据结构-数组、矩阵、广义表
数组、矩阵、广义表 目录 数组、矩阵、广义表 一、数组 二.矩阵 三、广义表 一、数组 这一章节理解基本概念即可。数组要看清其实下标是多少,并且二维数组,存取数据,要先看清楚是按照行存还是按列存,按行则是正常一行一行的去读…...
Idea 反编译jar包
实际项目中,有时候会需要更改jar包源码来达到业务需求,本文章将介绍一下如何通过Idea来进行jar反编译 1、Idea安装decompiler插件 2、找到decompiler插件文件夹 decompiler插件文件夹路径为:idea安装路径/plugins/java-decompiler/lib 3、…...
【Git】安装以及基本操作
目录 一、初识Git二、 在Linux底下安装Git一)centOS二)Ubuntu 三、 Git基本操作一) 创建本地仓库二)配置本地仓库三)认识工作区、暂存区、版本库四)添加文件五)查看.git文件六)修改文…...
Spring创建Bean的过程(2)
上一节介绍了Spring创建过程中的两个重要的接口,那么它们在创建Bean的过程中起到了什么作用呢?接下来请看: Spring有三种方式寻找 xml 配置文件,根据 xml 文件内容来构建 ApplicationContext,分别为ClassPathXmlAppli…...
Linux 终端操作命令(2)内部命令
Linux 终端操作命令 也称Shell命令,是用户与操作系统内核进行交互的命令解释器,它接收用户输入的命令并将其传递给操作系统进行执行,可分为内部命令和外部命令。内部命令是Shell程序的一部分,而外部命令是独立于Shell的可执行程序…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
