当前位置: 首页 > news >正文

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题九】Cartopy画地形等深线图

水深图基础差不多了,可以换成温度、盐度等

本期加上等深线

本期内容

1:地形等深线

cf = ax.contour(lon, lat, ele[:, :], levels=np.linspace(-9000,-100,10),colors='gray', linestyles='-',linewidths=0.25, transform=ccrs.PlateCarree())

图片
图片

2:改变颜色

colors='gray'

图片
图片

3:改变粗细

linewidths=1,数字越大线条越粗。

图片
图片

4:特定等值线

levels=[-9000, -8000, -5000, -3000, -1000, -300];想画哪条,填写对应数字。

图片
图片

5:特定线条特定颜色和粗细

cf = ax.contour(lon, lat, ele[:, :], levels=[-8000,-6000,-4000,-2000,-200],colors='k', linestyles='-',linewidths=0.3, transform=ccrs.PlateCarree())
cf = ax.contour(lon, lat, ele[:, :], levels=[-3000],colors='r', linestyles='-',linewidths=0.5, transform=ccrs.PlateCarree())

图片

6:线条样式

linestyles='-.在这里插入图片描述

图片
图片
图片
图片
图片

图片
7:显示数字

ax.clabel(cf,inline=True,fmt=‘%.f’,fontsize=3.5)
出现错误:不会了!

‘codes’ must be a 1D list or array with the same length of ‘vertices’. Your vertices have shape (2, 2) but your codes have shape (1,)

8:填充加上等值线

图片

参考文献及其在本文中的作用

Python气象绘图笔记(五)——等高线 - 知乎 (zhihu.com)

【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件

【python海洋专题二】读取水深nc文件并水深地形图
【python海洋专题三】图像修饰之画布和坐标轴

【Python海洋专题四】之水深地图图像修饰

【Python海洋专题五】之水深地形图海岸填充

【Python海洋专题六】之Cartopy画地形水深图

【python海洋专题】测试数据

【Python海洋专题七】Cartopy画地形水深图的陆地填充

【python海洋专题八】Cartopy画地形水深图的contourf填充间隔数调整


# -*- coding: utf-8 -*-
# %%
# Importing related function packages
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as feature
import numpy as np
import matplotlib.ticker as ticker
from cartopy import mpl
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from matplotlib.font_manager import FontProperties
from netCDF4 import Dataset
from palettable.cmocean.diverging import Delta_4
from palettable.colorbrewer.sequential import GnBu_9
from palettable.colorbrewer.sequential import Blues_9
from palettable.scientific.diverging import Roma_20
from pylab import *
def reverse_colourmap(cmap, name='my_cmap_r'):reverse = []k = []for key in cmap._segmentdata:k.append(key)channel = cmap._segmentdata[key]data = []for t in channel:data.append((1 - t[0], t[2], t[1]))reverse.append(sorted(data))LinearL = dict(zip(k, reverse))my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)return my_cmap_rcmap = Blues_9.mpl_colormap
cmap_r = reverse_colourmap(cmap)
cmap1 = GnBu_9.mpl_colormap
cmap_r1 = reverse_colourmap(cmap1)
cmap2 = Roma_20.mpl_colormap
cmap_r2 = reverse_colourmap(cmap2)
# read data
a = Dataset('D:\pycharm_work\data\scs_etopo.nc')
print(a)
lon = a.variables['lon'][:]
lat = a.variables['lat'][:]
ele = a.variables['elevation'][:]
# 图三
# 设置地图全局属性
scale = '50m'
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')#设置一个画板,将其返还给fig
ax = fig.add_axes([0.05, 0.08, 0.92, 0.8], projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([105, 125, 0, 25], crs=ccrs.PlateCarree())# 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)#添加海岸线:关键字lw设置线宽;linestyle设置线型
cs = ax.contourf(lon, lat, ele[:, :], levels=np.arange(-9000,0,20),extend='both',cmap=cmap_r1, transform=ccrs.PlateCarree())
# ------colorbar设置
cb = plt.colorbar(cs, ax=ax, extend='both', orientation='vertical',ticks=np.linspace(-9000, 0, 10))
cb.set_label('depth', fontsize=4, color='k')#设置colorbar的标签字体及其大小
cb.ax.tick_params(labelsize=4, direction='in') #设置colorbar刻度字体大小。
cf = ax.contour(lon, lat, ele[:, :], levels=[-5000,-2000,-500,-300,-100,-50,-10],colors='gray', linestyles='-',linewidths=0.2,transform=ccrs.PlateCarree())
#ax.clabel(cf, inline=True, fontsize=8, colors='red', fmt='%1.0f',manual=False)#ax.clabel(cf,inline=True,fmt='%.f',fontsize=3.5)# 添加标题
ax.set_title('Etopo', fontsize=4)
# 利用Formatter格式化刻度标签
ax.set_xticks(np.arange(107, 125, 4), crs=ccrs.PlateCarree())#添加经纬度
ax.set_xticklabels(np.arange(107, 125, 4), fontsize=4)
ax.set_yticks(np.arange(0, 25, 2), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 2), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(color='k', direction='in')#更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(107, 125, 4), ylocs=np.arange(0, 25, 2),linewidth=0.25, linestyle='--', color='k', alpha=0.8)#添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
plt.savefig('scs_elevation1.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

相关文章:

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题九】Cartopy画地形等深线图 水深图基础差不多了,可以换成温度、盐度等 本期加上等深线 本期内容 1:地形等深线 cf ax.contour(lon, lat, ele[:, :], levelsnp.linspace(-9000,-100,10),colorsgray, linestyles-,linewidths0.25, t…...

Java后端模拟面试,题集①

1.Spring bean的生命周期 实例化 Instantiation属性赋值 Populate初始化 Initialization销毁 Destruction 2.Spring AOP的创建在bean的哪个时期进行的 (图片转载自Spring Bean的完整生命周期(带流程图,好记)) 3.MQ如…...

UE5.1编辑器拓展【二、脚本化资产行为,快速更改资产名字,1.直接添加前缀或后缀2.通过资产类判断添加修改前缀】

目录 了解相关的函数 第一种做法:自定义添加选择资产的前缀或后缀 代码 效果 第二种做法:通过映射来获取资产类型添加前缀和修改前缀 映射代码 代码 效果 在之前一章中,我们创建了插件,用来扩展编辑器的使用: …...

短期风速预测|LSTM|ELM|批处理(matlab代码)

目录 1 主要内容 LSTM-长短时记忆 ELM-极限学习机 2 部分代码 3 程序结果 4 程序链接 1 主要内容 该程序是预测类的基础性代码,程序对河北某地区的气象数据进行详细统计,程序最终得到pm2.5的预测结果,通过更改数据很容易得到风速预测结…...

【LeetCode热题100】--102.二叉树的层序遍历

102.二叉树的层序遍历 广度优先搜索: 我们可以想到最朴素的方法是用一个二元组 (node, level) 来表示状态,它表示某个节点和它所在的层数,每个新进队列的节点的 level 值都是父亲节点的 level 值加一。最后根据每个点的 level 对点进行分类&…...

第44节——redux store

一、概念 Redux 是一个用于管理 JavaScript 应用状态的库。在 Redux 中,整个应用的状态都存储在一个对象中,称为 store。 Store 实际上是一个 JavaScript 对象,它存储了整个应用的状态。它是唯一的,意味着应用中只有一个 store。…...

【2023年11月第四版教材】第17章《干系人管理》(第二部分)

第17章《干系人管理》(第二部分) 4 过程1-识别干系人4.1 数据收集★★★4.3数据分析4.4 权力利益方格4.5 数据表现:干系人映射分析和表现★★★ 5 过程2-规划干系人参与5.1 数据分析5.2 数据表现★★★5.2.1 干系人参与度评估矩阵★★★ 5.3 …...

含分布式电源的配电网可靠性评估(matlab代码)

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序参考《基于仿射最小路法的含分布式电源配电网可靠性分析》文献方法,通过概率模型和时序模型分别进行建模,实现基于概率模型最小路法的含分布式电源配电网可靠性评估以及时序模型…...

react的组件

组件 组件是用来实现局部功能的代码和资源的集合(html/css/js),用来复用代码。 react中分为函数式组件和类式组件。函数式组件就是一个函数,函数的返回值就是组件的视图内容。类式组件就是通过class关键字创建的类,类…...

低功耗引擎Cliptrix为什么可以成为IOT的高效能工具

在万物互联的时代,现代人已普遍接受电视、音箱等电器设备具备智能化能力,也是在这个趋势下,我们身边越来越多的iOT设备联网和交互成为刚需。 但iot设备也面临到一些非常显著的痛点,例如iot设备的内存、处理器等核心元件无法与手机…...

深入学习git

1、git原理及整体架构图 一些常用的命令 git add . 或 git add src/com/ygl/hello/hello.java 指定文件 git commit . 或 git commit src/com/ygl/hello/hello.java 指定文件 git push origin 分支名称 2、git stash的应用场景 场景一:你正在当前分支A开发&…...

第9章 Mybatis

9.1 谈谈你对Mybatis的理解 难度:★★ 重点:★★ 白话解析 说清楚Mybatis是什么,它的工作流程,然后再对比一下Hibernate就好了。 1、Mybatis是什么:它一个半自动ORM框架,它底层把JDBC那套加载驱动、创建连接、创建statement等重复性的硬编码全部给你封装好了,程序员只…...

隐蔽通信论文复现

文章目录 前言一、Limits of Reliable Communication with Low Probability of Detection on AWGN Channels摘要introduction 前言 本文准备先考虑隐蔽中通信经典的Alice, Bob, Willie三点模型, 总结出其中的经典套路 一、Limits of Reliable Communication with Low Probabil…...

《Vue.js+Spring Boot全栈开发实战》简介

大家好,我是老卫。 恰逢中秋国庆双节,不想出门看人山,惟愿宅家阅书海! 今天开箱的这本书是《Vue.jsSpring Boot全栈开发实战》。 外观 从书名故名思议,就是基于Vue.jsSpring Boot来实现企业级应用全栈开发。 该书由…...

机器人中的数值优化(二十)——函数的光滑化技巧

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…...

搭建全连接网络进行分类(糖尿病为例)

拿来练手,大神请绕道。 1.网上的代码大多都写在一个函数里,但是其实很多好论文都是把网络,数据训练等分开写的。 2.分开写就是有一个需要注意的事情,就是要import 要用到的文件中的模型或者变量等。 3.全连接的回归也写了&#…...

【小沐学前端】Node.js实现基于Protobuf协议的UDP通信(UDP/TCP)

文章目录 1、简介1.1 node1.2 Protobuf 2、下载和安装2.1 node2.2 Protobuf2.2.1 安装2.2.2 工具 3、node 代码示例3.1 HTTP3.2 UDP单播3.4 UDP广播 4、Protobuf 代码示例4.1 例子: awesome.proto4.1.1 加载.proto文件方式4.1.2 加载.json文件方式4.1.3 加载.js文件方式 4.2 例…...

Verasity Tokenomics — 社区讨论总结与下一步计划

Verasity 代币经济学的社区讨论已结束。 本次讨论从 8 月 4 日持续到 9 月 29 日,是区块链领域规模最大的讨论之一,超过 500,000 名 VRA 持有者和社区成员参与讨论,并收到了数千份回复。 首先,我们要感谢所有参与讨论并提出详细建…...

JUC第十三讲:JUC锁: ReentrantLock详解

JUC第十三讲:JUC锁: ReentrantLock详解 本文是JUC第十三讲,JUC锁:ReentrantLock详解。可重入锁 ReentrantLock 的底层是通过 AbstractQueuedSynchronizer 实现,所以先要学习上一章节 AbstractQueuedSynchronizer 详解。 文章目录 …...

WSL2安装历程

WLS2安装 1、系统检查 安装WSL2必须运行 Windows 10 版本 2004 及更高版本(内部版本 19041 及更高版本)或 Windows 11。 查看 Windows 版本及内部版本号,选择 Win R,然后键入winver。 2、家庭版升级企业版 下载HEU_KMS_Activ…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息&#xff0…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块&#xff0…...