当前位置: 首页 > news >正文

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题九】Cartopy画地形等深线图

水深图基础差不多了,可以换成温度、盐度等

本期加上等深线

本期内容

1:地形等深线

cf = ax.contour(lon, lat, ele[:, :], levels=np.linspace(-9000,-100,10),colors='gray', linestyles='-',linewidths=0.25, transform=ccrs.PlateCarree())

图片
图片

2:改变颜色

colors='gray'

图片
图片

3:改变粗细

linewidths=1,数字越大线条越粗。

图片
图片

4:特定等值线

levels=[-9000, -8000, -5000, -3000, -1000, -300];想画哪条,填写对应数字。

图片
图片

5:特定线条特定颜色和粗细

cf = ax.contour(lon, lat, ele[:, :], levels=[-8000,-6000,-4000,-2000,-200],colors='k', linestyles='-',linewidths=0.3, transform=ccrs.PlateCarree())
cf = ax.contour(lon, lat, ele[:, :], levels=[-3000],colors='r', linestyles='-',linewidths=0.5, transform=ccrs.PlateCarree())

图片

6:线条样式

linestyles='-.在这里插入图片描述

图片
图片
图片
图片
图片

图片
7:显示数字

ax.clabel(cf,inline=True,fmt=‘%.f’,fontsize=3.5)
出现错误:不会了!

‘codes’ must be a 1D list or array with the same length of ‘vertices’. Your vertices have shape (2, 2) but your codes have shape (1,)

8:填充加上等值线

图片

参考文献及其在本文中的作用

Python气象绘图笔记(五)——等高线 - 知乎 (zhihu.com)

【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件

【python海洋专题二】读取水深nc文件并水深地形图
【python海洋专题三】图像修饰之画布和坐标轴

【Python海洋专题四】之水深地图图像修饰

【Python海洋专题五】之水深地形图海岸填充

【Python海洋专题六】之Cartopy画地形水深图

【python海洋专题】测试数据

【Python海洋专题七】Cartopy画地形水深图的陆地填充

【python海洋专题八】Cartopy画地形水深图的contourf填充间隔数调整


# -*- coding: utf-8 -*-
# %%
# Importing related function packages
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as feature
import numpy as np
import matplotlib.ticker as ticker
from cartopy import mpl
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from matplotlib.font_manager import FontProperties
from netCDF4 import Dataset
from palettable.cmocean.diverging import Delta_4
from palettable.colorbrewer.sequential import GnBu_9
from palettable.colorbrewer.sequential import Blues_9
from palettable.scientific.diverging import Roma_20
from pylab import *
def reverse_colourmap(cmap, name='my_cmap_r'):reverse = []k = []for key in cmap._segmentdata:k.append(key)channel = cmap._segmentdata[key]data = []for t in channel:data.append((1 - t[0], t[2], t[1]))reverse.append(sorted(data))LinearL = dict(zip(k, reverse))my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)return my_cmap_rcmap = Blues_9.mpl_colormap
cmap_r = reverse_colourmap(cmap)
cmap1 = GnBu_9.mpl_colormap
cmap_r1 = reverse_colourmap(cmap1)
cmap2 = Roma_20.mpl_colormap
cmap_r2 = reverse_colourmap(cmap2)
# read data
a = Dataset('D:\pycharm_work\data\scs_etopo.nc')
print(a)
lon = a.variables['lon'][:]
lat = a.variables['lat'][:]
ele = a.variables['elevation'][:]
# 图三
# 设置地图全局属性
scale = '50m'
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')#设置一个画板,将其返还给fig
ax = fig.add_axes([0.05, 0.08, 0.92, 0.8], projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([105, 125, 0, 25], crs=ccrs.PlateCarree())# 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)#添加海岸线:关键字lw设置线宽;linestyle设置线型
cs = ax.contourf(lon, lat, ele[:, :], levels=np.arange(-9000,0,20),extend='both',cmap=cmap_r1, transform=ccrs.PlateCarree())
# ------colorbar设置
cb = plt.colorbar(cs, ax=ax, extend='both', orientation='vertical',ticks=np.linspace(-9000, 0, 10))
cb.set_label('depth', fontsize=4, color='k')#设置colorbar的标签字体及其大小
cb.ax.tick_params(labelsize=4, direction='in') #设置colorbar刻度字体大小。
cf = ax.contour(lon, lat, ele[:, :], levels=[-5000,-2000,-500,-300,-100,-50,-10],colors='gray', linestyles='-',linewidths=0.2,transform=ccrs.PlateCarree())
#ax.clabel(cf, inline=True, fontsize=8, colors='red', fmt='%1.0f',manual=False)#ax.clabel(cf,inline=True,fmt='%.f',fontsize=3.5)# 添加标题
ax.set_title('Etopo', fontsize=4)
# 利用Formatter格式化刻度标签
ax.set_xticks(np.arange(107, 125, 4), crs=ccrs.PlateCarree())#添加经纬度
ax.set_xticklabels(np.arange(107, 125, 4), fontsize=4)
ax.set_yticks(np.arange(0, 25, 2), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 2), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(color='k', direction='in')#更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(107, 125, 4), ylocs=np.arange(0, 25, 2),linewidth=0.25, linestyle='--', color='k', alpha=0.8)#添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
plt.savefig('scs_elevation1.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

相关文章:

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题九】Cartopy画地形等深线图 水深图基础差不多了,可以换成温度、盐度等 本期加上等深线 本期内容 1:地形等深线 cf ax.contour(lon, lat, ele[:, :], levelsnp.linspace(-9000,-100,10),colorsgray, linestyles-,linewidths0.25, t…...

Java后端模拟面试,题集①

1.Spring bean的生命周期 实例化 Instantiation属性赋值 Populate初始化 Initialization销毁 Destruction 2.Spring AOP的创建在bean的哪个时期进行的 (图片转载自Spring Bean的完整生命周期(带流程图,好记)) 3.MQ如…...

UE5.1编辑器拓展【二、脚本化资产行为,快速更改资产名字,1.直接添加前缀或后缀2.通过资产类判断添加修改前缀】

目录 了解相关的函数 第一种做法:自定义添加选择资产的前缀或后缀 代码 效果 第二种做法:通过映射来获取资产类型添加前缀和修改前缀 映射代码 代码 效果 在之前一章中,我们创建了插件,用来扩展编辑器的使用: …...

短期风速预测|LSTM|ELM|批处理(matlab代码)

目录 1 主要内容 LSTM-长短时记忆 ELM-极限学习机 2 部分代码 3 程序结果 4 程序链接 1 主要内容 该程序是预测类的基础性代码,程序对河北某地区的气象数据进行详细统计,程序最终得到pm2.5的预测结果,通过更改数据很容易得到风速预测结…...

【LeetCode热题100】--102.二叉树的层序遍历

102.二叉树的层序遍历 广度优先搜索: 我们可以想到最朴素的方法是用一个二元组 (node, level) 来表示状态,它表示某个节点和它所在的层数,每个新进队列的节点的 level 值都是父亲节点的 level 值加一。最后根据每个点的 level 对点进行分类&…...

第44节——redux store

一、概念 Redux 是一个用于管理 JavaScript 应用状态的库。在 Redux 中,整个应用的状态都存储在一个对象中,称为 store。 Store 实际上是一个 JavaScript 对象,它存储了整个应用的状态。它是唯一的,意味着应用中只有一个 store。…...

【2023年11月第四版教材】第17章《干系人管理》(第二部分)

第17章《干系人管理》(第二部分) 4 过程1-识别干系人4.1 数据收集★★★4.3数据分析4.4 权力利益方格4.5 数据表现:干系人映射分析和表现★★★ 5 过程2-规划干系人参与5.1 数据分析5.2 数据表现★★★5.2.1 干系人参与度评估矩阵★★★ 5.3 …...

含分布式电源的配电网可靠性评估(matlab代码)

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序参考《基于仿射最小路法的含分布式电源配电网可靠性分析》文献方法,通过概率模型和时序模型分别进行建模,实现基于概率模型最小路法的含分布式电源配电网可靠性评估以及时序模型…...

react的组件

组件 组件是用来实现局部功能的代码和资源的集合(html/css/js),用来复用代码。 react中分为函数式组件和类式组件。函数式组件就是一个函数,函数的返回值就是组件的视图内容。类式组件就是通过class关键字创建的类,类…...

低功耗引擎Cliptrix为什么可以成为IOT的高效能工具

在万物互联的时代,现代人已普遍接受电视、音箱等电器设备具备智能化能力,也是在这个趋势下,我们身边越来越多的iOT设备联网和交互成为刚需。 但iot设备也面临到一些非常显著的痛点,例如iot设备的内存、处理器等核心元件无法与手机…...

深入学习git

1、git原理及整体架构图 一些常用的命令 git add . 或 git add src/com/ygl/hello/hello.java 指定文件 git commit . 或 git commit src/com/ygl/hello/hello.java 指定文件 git push origin 分支名称 2、git stash的应用场景 场景一:你正在当前分支A开发&…...

第9章 Mybatis

9.1 谈谈你对Mybatis的理解 难度:★★ 重点:★★ 白话解析 说清楚Mybatis是什么,它的工作流程,然后再对比一下Hibernate就好了。 1、Mybatis是什么:它一个半自动ORM框架,它底层把JDBC那套加载驱动、创建连接、创建statement等重复性的硬编码全部给你封装好了,程序员只…...

隐蔽通信论文复现

文章目录 前言一、Limits of Reliable Communication with Low Probability of Detection on AWGN Channels摘要introduction 前言 本文准备先考虑隐蔽中通信经典的Alice, Bob, Willie三点模型, 总结出其中的经典套路 一、Limits of Reliable Communication with Low Probabil…...

《Vue.js+Spring Boot全栈开发实战》简介

大家好,我是老卫。 恰逢中秋国庆双节,不想出门看人山,惟愿宅家阅书海! 今天开箱的这本书是《Vue.jsSpring Boot全栈开发实战》。 外观 从书名故名思议,就是基于Vue.jsSpring Boot来实现企业级应用全栈开发。 该书由…...

机器人中的数值优化(二十)——函数的光滑化技巧

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…...

搭建全连接网络进行分类(糖尿病为例)

拿来练手,大神请绕道。 1.网上的代码大多都写在一个函数里,但是其实很多好论文都是把网络,数据训练等分开写的。 2.分开写就是有一个需要注意的事情,就是要import 要用到的文件中的模型或者变量等。 3.全连接的回归也写了&#…...

【小沐学前端】Node.js实现基于Protobuf协议的UDP通信(UDP/TCP)

文章目录 1、简介1.1 node1.2 Protobuf 2、下载和安装2.1 node2.2 Protobuf2.2.1 安装2.2.2 工具 3、node 代码示例3.1 HTTP3.2 UDP单播3.4 UDP广播 4、Protobuf 代码示例4.1 例子: awesome.proto4.1.1 加载.proto文件方式4.1.2 加载.json文件方式4.1.3 加载.js文件方式 4.2 例…...

Verasity Tokenomics — 社区讨论总结与下一步计划

Verasity 代币经济学的社区讨论已结束。 本次讨论从 8 月 4 日持续到 9 月 29 日,是区块链领域规模最大的讨论之一,超过 500,000 名 VRA 持有者和社区成员参与讨论,并收到了数千份回复。 首先,我们要感谢所有参与讨论并提出详细建…...

JUC第十三讲:JUC锁: ReentrantLock详解

JUC第十三讲:JUC锁: ReentrantLock详解 本文是JUC第十三讲,JUC锁:ReentrantLock详解。可重入锁 ReentrantLock 的底层是通过 AbstractQueuedSynchronizer 实现,所以先要学习上一章节 AbstractQueuedSynchronizer 详解。 文章目录 …...

WSL2安装历程

WLS2安装 1、系统检查 安装WSL2必须运行 Windows 10 版本 2004 及更高版本(内部版本 19041 及更高版本)或 Windows 11。 查看 Windows 版本及内部版本号,选择 Win R,然后键入winver。 2、家庭版升级企业版 下载HEU_KMS_Activ…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...