当前位置: 首页 > news >正文

机器学习基础-手写数字识别

  1. 手写数字识别,计算机视觉领域的Hello World
  2. 利用MNIST数据集,55000训练集,5000验证集。
  3. Pytorch实现神经网络手写数字识别
  4. 感知机与神经元、权重和偏置、神经网络、输入层、隐藏层、输出层
  5. mac gpu的使用
  6. 本节就是对Pytorch可以做的事情有个直观的理解,先理解表面,把大概知识打通,然后再研究细节的东西
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
# Check that MPS is available
if not torch.backends.mps.is_available():if not torch.backends.mps.is_built():print("MPS not available because the current PyTorch install was not ""built with MPS enabled.")else:print("MPS not available because the current MacOS version is not 12.3+ ""and/or you do not have an MPS-enabled device on this machine.")
else:device = torch.device("mps")
class Net(nn.Module):def __init__(self):super().__init__()# 28*28 = 784为输入,100为输出self.fcl = nn.Linear(784,100)self.fc2 = nn.Linear(100,10)def forward(self,x):x = torch.flatten(x,start_dim = 1)x = torch.relu(self.fcl(x))x = self.fc2(x)return x
# 当前模型对数据集学几次
max_epochs = 5
# 每次训练模型对多少张图片进行训练
batch_size = 16# data
# ToTensor 把当前数据类型转换为 Tensor
# Compose是组合多个转换操作的类
transform = transforms.Compose([transforms.ToTensor()])# 55000
trainset = torchvision.datasets.MNIST(root='./data',train=True,download=True,transform=transform)
train_loader = torch.utils.data.DataLoader(trainset,batch_size=batch_size,shuffle=True)
testset = torchvision.datasets.MNIST(root='./data',train=False,download=True,transform=transform)
test_loader = torch.utils.data.DataLoader(testset,batch_size=batch_size,shuffle=True)
# net init
net = Net()
net.to(device)# nn.MSE
loss = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=0.0001)def train():acc_num=0for epoch in range(max_epochs):for i,(data,label) in enumerate(train_loader):data = data.to(device)label = label.to(device)optimizer.zero_grad()output = net(data)Loss = loss(output,label)Loss.backward()optimizer.step()pred_class = torch.max(output,dim=1)[1]acc_num += torch.eq(pred_class,label.to(device)).sum().item()train_acc = acc_num / len(trainset)net.eval()acc_num = 0.0best_acc = 0with torch.no_grad():for val_data in test_loader:val_image,val_label = val_dataoutput = net(val_image.to(device))predict_y = torch.max(output , dim=1)[1]acc_num += torch.eq(predict_y,val_label.to(device)).sum().item()val_acc = acc_num/len(testset)print(train_acc,val_acc)if val_acc > best_acc:torch.save(net.state_dict(),'./minst.pth')best_acc = val_accacc_num = 0train_acc = 0test_acc = 0print('done')train()
0.1348 0.3007
done
0.4361 0.5548
done
0.5870666666666666 0.6335
done
0.6435333333333333 0.672
done
0.67915 0.7011
done

相关文章:

机器学习基础-手写数字识别

手写数字识别,计算机视觉领域的Hello World利用MNIST数据集,55000训练集,5000验证集。Pytorch实现神经网络手写数字识别感知机与神经元、权重和偏置、神经网络、输入层、隐藏层、输出层mac gpu的使用本节就是对Pytorch可以做的事情有个直观的…...

idea 插件推荐(持续更新)

文章目录 Material Theme UIcodeium(建议有梯子的使用)Key Promoter XCodeGlanceRainbow BracketsMarkdown NavigatorRestfulToolkitString Manipulation Material Theme UI 谁不想拥有一款狂拽炫酷 吊炸天 的编码主题呢,给你推荐Material Theme UI Plugin Material Theme UI是…...

实现Promise所有核心功能和方法

一直以来对Promise只是会用简单的方法,例如then,catch等,对于其余各种方法也只是简单了解,这次想要通过实现Promise来加深对Promise的使用 话不多说,直接开始,简单粗暴一步步来 一:了解Promise …...

学习总结1

Vue的学习 Vue是一套用于构建用户界面的渐进式JavaScript框架; Vue中关键的几个概念:组件化,MVVM,响应式,和生命周期。 1. 组件化: 在Vue框架中,允许你将界面拆分为小的,独立的可…...

使用 Apache Camel 和 Quarkus 的微服务(二)

【squids.cn】 全网zui低价RDS,免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 在本系列的第一部分,我们看到了一个简化版的基于微服务的转账应用程序,该应用程序使用Apache Camel和AWS SDK(软件开发套件&#xf…...

pid-limit参数实验

fork炸弹命令 :(){ :|:& };: 可以看到,如果docker没有限制,会遭到fork炸弹恶意 参考 https://www.cyberciti.biz/faq/understanding-bash-fork-bomb/...

jvm--执行引擎

文章目录 1. 执行引擎的工作流程2. 解释器、JIT及时编译器3. 热点代码及探测技术4. HotSpotVM 中 JIT 分类 执行引擎属于 JVM 的下层,里面包括解释器、及时编译器、垃圾回收器 JVM 的主要任务是负责 装载字节码到其内部,但字节码并不能够直接运行在操作…...

day13|二叉树理论

一、二叉树的定义 //定义一个二叉树:使用链式存储 public class TreeNode {int val; // 节点的值TreeNode left; // 左子节点TreeNode right; // 右子节点public TreeNode() {}// 构造函数,初始化节点值public TreeNode(int val){this.valval;}// 构造函…...

php+html+js+ajax实现文件上传

phphtmljsajax实现文件上传 目录 一、表单单文件上传 1、上传页面 2、接受文件上传php 二、表单多文件上传 1、上传页面 2、接受文件上传php 三、表单异步xhr文件上传 1、上传页面 2、接受文件上传php 四、表单异步ajax文件上传 1、上传页面 2、接受文件上传ph…...

日期时间参数,格式配置(SpringBoot)

介绍 在SpringBoot项目中,接口中的日期和时间类型的参数,配置格式。 日期格式 接口中常用的日期时间格式有两种: 字符串(比如:yyyy-MM-dd HH:mm:ss)时间戳(比如:1696839876955&a…...

JAVA 泛型的定义以及使用

泛型类 /*** <T> 为该类定义泛型&#xff0c;可以是一个或多个<T,...>* 定义的泛型可以在类中作为&#xff1a;* 类变量类型&#xff1a; T data* 类方法的入参以及返回类型 public void setData(T data)&#xff0c;public T getData();次数以set&a…...

Day-08 基于 Docker安装 Nginx 镜像-负载均衡

1、反向代理后&#xff0c;自然而然就引出了负载均衡,下面简单实现负载均衡的效果; 2、实现该效果需要再添加一个 Nginx &#xff0c;所以要增加一个文件夹。 /home|---mutou|----nginx|----conf.d|----html|----conf.d2|----html3 1.创建 html3 文件夹&#xff0c; 新建 index…...

3、在 CentOS 8 系统上安装 PostgreSQL 15.4

PostgreSQL&#xff0c;作为一款备受欢迎的开源关系数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;已经存在了三十多年的历史。它提供了SQL语言支持&#xff0c;用于管理数据库和执行CRUD操作&#xff08;创建、读取、更新、删除&#xff09;。 由于其卓越的健壮性…...

sap 一次性供应商 供应商账户组 临时供应商 <转载>

原文链接&#xff1a;https://blog.csdn.net/xianshengsun/article/details/132620593 sap中有一次性供应商这个名词&#xff0c;一次性供应商和非一次性供应商又有什么区别呢&#xff1f; 有如何区分一次性供应商和非一次性供应商呢&#xff1f; 1 区分一次性供应商和非一次性…...

总结html5中常见的选择器

HTML5并没有引入新的选择器类型&#xff0c;它仍然使用CSS选择器来选择和操作HTML元素。HTML5中仍然可以使用CSS2和CSS3中定义的各种选择器。以下是HTML5中常见的选择器类型&#xff1a; 1. 元素选择器&#xff08;Element Selector&#xff09;&#xff1a;使用元素名称作为选…...

Java基础面试-JDK JRE JVM

详细解释 JDK&#xff08;Java Devalpment Kit&#xff09;java 开发工具 JDK是Java开发工具包&#xff0c;它是Java开发者用于编写、编译、调试和运行Java程序的核心组件。JDK包含了Java编程语言的开发工具和工具集&#xff0c;以及Java标准库和其他一些必要的文件。JDK中的…...

OpenCV实现图像傅里叶变换

傅里叶变换 dftcv.dft(img_float32,flagscv.DFT_COMPLEX_OUTPUT): flags:标志位&#xff0c;指定变换类型&#xff0c;cv.DFT_COMPLEX_OUTPUT会返回复数结果。 傅立叶变换&#xff0c;将输入的图像从空间域转换到频率域。 返回结果: 此函数返回一个复杂数值数组&#xff0c…...

快手新版本sig3参数算法还原

Frida Native层主动调用 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81…...

Linux 安全 - LSM机制

文章目录 前言一、LSM起源二、LSM简介2.1 MAC2.2 LSM特征 三、Major and Minor LSMs3.1 Major LSMs3.2 Minor LSMs3.3 BPF LSM 四、LSM 框架五、LSM Capabilities Module六、LSM hooks 说明参考资料 前言 在这两篇文章中介绍了 Linux 安全机制 Credentials &#xff1a; Linu…...

uni-app:实现简易自定义下拉列表

效果 代码 <template><view><view class"dropdown-trigger" tap"showDropdown">{{ selectedItem }}</view><view class"dropdown-list" v-if"showList"><view class"dropdown-item" v-f…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...

初探用uniapp写微信小程序遇到的问题及解决(vue3+ts)

零、关于开发思路 (一)拿到工作任务,先理清楚需求 1.逻辑部分 不放过原型里说的每一句话,有疑惑的部分该问产品/测试/之前的开发就问 2.页面部分(含国际化) 整体看过需要开发页面的原型后,分类一下哪些组件/样式可以复用,直接提取出来使用 (时间充分的前提下,不…...