当前位置: 首页 > news >正文

机器学习基础-手写数字识别

  1. 手写数字识别,计算机视觉领域的Hello World
  2. 利用MNIST数据集,55000训练集,5000验证集。
  3. Pytorch实现神经网络手写数字识别
  4. 感知机与神经元、权重和偏置、神经网络、输入层、隐藏层、输出层
  5. mac gpu的使用
  6. 本节就是对Pytorch可以做的事情有个直观的理解,先理解表面,把大概知识打通,然后再研究细节的东西
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
# Check that MPS is available
if not torch.backends.mps.is_available():if not torch.backends.mps.is_built():print("MPS not available because the current PyTorch install was not ""built with MPS enabled.")else:print("MPS not available because the current MacOS version is not 12.3+ ""and/or you do not have an MPS-enabled device on this machine.")
else:device = torch.device("mps")
class Net(nn.Module):def __init__(self):super().__init__()# 28*28 = 784为输入,100为输出self.fcl = nn.Linear(784,100)self.fc2 = nn.Linear(100,10)def forward(self,x):x = torch.flatten(x,start_dim = 1)x = torch.relu(self.fcl(x))x = self.fc2(x)return x
# 当前模型对数据集学几次
max_epochs = 5
# 每次训练模型对多少张图片进行训练
batch_size = 16# data
# ToTensor 把当前数据类型转换为 Tensor
# Compose是组合多个转换操作的类
transform = transforms.Compose([transforms.ToTensor()])# 55000
trainset = torchvision.datasets.MNIST(root='./data',train=True,download=True,transform=transform)
train_loader = torch.utils.data.DataLoader(trainset,batch_size=batch_size,shuffle=True)
testset = torchvision.datasets.MNIST(root='./data',train=False,download=True,transform=transform)
test_loader = torch.utils.data.DataLoader(testset,batch_size=batch_size,shuffle=True)
# net init
net = Net()
net.to(device)# nn.MSE
loss = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=0.0001)def train():acc_num=0for epoch in range(max_epochs):for i,(data,label) in enumerate(train_loader):data = data.to(device)label = label.to(device)optimizer.zero_grad()output = net(data)Loss = loss(output,label)Loss.backward()optimizer.step()pred_class = torch.max(output,dim=1)[1]acc_num += torch.eq(pred_class,label.to(device)).sum().item()train_acc = acc_num / len(trainset)net.eval()acc_num = 0.0best_acc = 0with torch.no_grad():for val_data in test_loader:val_image,val_label = val_dataoutput = net(val_image.to(device))predict_y = torch.max(output , dim=1)[1]acc_num += torch.eq(predict_y,val_label.to(device)).sum().item()val_acc = acc_num/len(testset)print(train_acc,val_acc)if val_acc > best_acc:torch.save(net.state_dict(),'./minst.pth')best_acc = val_accacc_num = 0train_acc = 0test_acc = 0print('done')train()
0.1348 0.3007
done
0.4361 0.5548
done
0.5870666666666666 0.6335
done
0.6435333333333333 0.672
done
0.67915 0.7011
done

相关文章:

机器学习基础-手写数字识别

手写数字识别,计算机视觉领域的Hello World利用MNIST数据集,55000训练集,5000验证集。Pytorch实现神经网络手写数字识别感知机与神经元、权重和偏置、神经网络、输入层、隐藏层、输出层mac gpu的使用本节就是对Pytorch可以做的事情有个直观的…...

idea 插件推荐(持续更新)

文章目录 Material Theme UIcodeium(建议有梯子的使用)Key Promoter XCodeGlanceRainbow BracketsMarkdown NavigatorRestfulToolkitString Manipulation Material Theme UI 谁不想拥有一款狂拽炫酷 吊炸天 的编码主题呢,给你推荐Material Theme UI Plugin Material Theme UI是…...

实现Promise所有核心功能和方法

一直以来对Promise只是会用简单的方法,例如then,catch等,对于其余各种方法也只是简单了解,这次想要通过实现Promise来加深对Promise的使用 话不多说,直接开始,简单粗暴一步步来 一:了解Promise …...

学习总结1

Vue的学习 Vue是一套用于构建用户界面的渐进式JavaScript框架; Vue中关键的几个概念:组件化,MVVM,响应式,和生命周期。 1. 组件化: 在Vue框架中,允许你将界面拆分为小的,独立的可…...

使用 Apache Camel 和 Quarkus 的微服务(二)

【squids.cn】 全网zui低价RDS,免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 在本系列的第一部分,我们看到了一个简化版的基于微服务的转账应用程序,该应用程序使用Apache Camel和AWS SDK(软件开发套件&#xf…...

pid-limit参数实验

fork炸弹命令 :(){ :|:& };: 可以看到,如果docker没有限制,会遭到fork炸弹恶意 参考 https://www.cyberciti.biz/faq/understanding-bash-fork-bomb/...

jvm--执行引擎

文章目录 1. 执行引擎的工作流程2. 解释器、JIT及时编译器3. 热点代码及探测技术4. HotSpotVM 中 JIT 分类 执行引擎属于 JVM 的下层,里面包括解释器、及时编译器、垃圾回收器 JVM 的主要任务是负责 装载字节码到其内部,但字节码并不能够直接运行在操作…...

day13|二叉树理论

一、二叉树的定义 //定义一个二叉树:使用链式存储 public class TreeNode {int val; // 节点的值TreeNode left; // 左子节点TreeNode right; // 右子节点public TreeNode() {}// 构造函数,初始化节点值public TreeNode(int val){this.valval;}// 构造函…...

php+html+js+ajax实现文件上传

phphtmljsajax实现文件上传 目录 一、表单单文件上传 1、上传页面 2、接受文件上传php 二、表单多文件上传 1、上传页面 2、接受文件上传php 三、表单异步xhr文件上传 1、上传页面 2、接受文件上传php 四、表单异步ajax文件上传 1、上传页面 2、接受文件上传ph…...

日期时间参数,格式配置(SpringBoot)

介绍 在SpringBoot项目中,接口中的日期和时间类型的参数,配置格式。 日期格式 接口中常用的日期时间格式有两种: 字符串(比如:yyyy-MM-dd HH:mm:ss)时间戳(比如:1696839876955&a…...

JAVA 泛型的定义以及使用

泛型类 /*** <T> 为该类定义泛型&#xff0c;可以是一个或多个<T,...>* 定义的泛型可以在类中作为&#xff1a;* 类变量类型&#xff1a; T data* 类方法的入参以及返回类型 public void setData(T data)&#xff0c;public T getData();次数以set&a…...

Day-08 基于 Docker安装 Nginx 镜像-负载均衡

1、反向代理后&#xff0c;自然而然就引出了负载均衡,下面简单实现负载均衡的效果; 2、实现该效果需要再添加一个 Nginx &#xff0c;所以要增加一个文件夹。 /home|---mutou|----nginx|----conf.d|----html|----conf.d2|----html3 1.创建 html3 文件夹&#xff0c; 新建 index…...

3、在 CentOS 8 系统上安装 PostgreSQL 15.4

PostgreSQL&#xff0c;作为一款备受欢迎的开源关系数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;已经存在了三十多年的历史。它提供了SQL语言支持&#xff0c;用于管理数据库和执行CRUD操作&#xff08;创建、读取、更新、删除&#xff09;。 由于其卓越的健壮性…...

sap 一次性供应商 供应商账户组 临时供应商 <转载>

原文链接&#xff1a;https://blog.csdn.net/xianshengsun/article/details/132620593 sap中有一次性供应商这个名词&#xff0c;一次性供应商和非一次性供应商又有什么区别呢&#xff1f; 有如何区分一次性供应商和非一次性供应商呢&#xff1f; 1 区分一次性供应商和非一次性…...

总结html5中常见的选择器

HTML5并没有引入新的选择器类型&#xff0c;它仍然使用CSS选择器来选择和操作HTML元素。HTML5中仍然可以使用CSS2和CSS3中定义的各种选择器。以下是HTML5中常见的选择器类型&#xff1a; 1. 元素选择器&#xff08;Element Selector&#xff09;&#xff1a;使用元素名称作为选…...

Java基础面试-JDK JRE JVM

详细解释 JDK&#xff08;Java Devalpment Kit&#xff09;java 开发工具 JDK是Java开发工具包&#xff0c;它是Java开发者用于编写、编译、调试和运行Java程序的核心组件。JDK包含了Java编程语言的开发工具和工具集&#xff0c;以及Java标准库和其他一些必要的文件。JDK中的…...

OpenCV实现图像傅里叶变换

傅里叶变换 dftcv.dft(img_float32,flagscv.DFT_COMPLEX_OUTPUT): flags:标志位&#xff0c;指定变换类型&#xff0c;cv.DFT_COMPLEX_OUTPUT会返回复数结果。 傅立叶变换&#xff0c;将输入的图像从空间域转换到频率域。 返回结果: 此函数返回一个复杂数值数组&#xff0c…...

快手新版本sig3参数算法还原

Frida Native层主动调用 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81…...

Linux 安全 - LSM机制

文章目录 前言一、LSM起源二、LSM简介2.1 MAC2.2 LSM特征 三、Major and Minor LSMs3.1 Major LSMs3.2 Minor LSMs3.3 BPF LSM 四、LSM 框架五、LSM Capabilities Module六、LSM hooks 说明参考资料 前言 在这两篇文章中介绍了 Linux 安全机制 Credentials &#xff1a; Linu…...

uni-app:实现简易自定义下拉列表

效果 代码 <template><view><view class"dropdown-trigger" tap"showDropdown">{{ selectedItem }}</view><view class"dropdown-list" v-if"showList"><view class"dropdown-item" v-f…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...