机器学习基础-手写数字识别
- 手写数字识别,计算机视觉领域的Hello World
- 利用MNIST数据集,55000训练集,5000验证集。
- Pytorch实现神经网络手写数字识别
- 感知机与神经元、权重和偏置、神经网络、输入层、隐藏层、输出层
- mac gpu的使用
- 本节就是对Pytorch可以做的事情有个直观的理解,先理解表面,把大概知识打通,然后再研究细节的东西
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
# Check that MPS is available
if not torch.backends.mps.is_available():if not torch.backends.mps.is_built():print("MPS not available because the current PyTorch install was not ""built with MPS enabled.")else:print("MPS not available because the current MacOS version is not 12.3+ ""and/or you do not have an MPS-enabled device on this machine.")
else:device = torch.device("mps")
class Net(nn.Module):def __init__(self):super().__init__()# 28*28 = 784为输入,100为输出self.fcl = nn.Linear(784,100)self.fc2 = nn.Linear(100,10)def forward(self,x):x = torch.flatten(x,start_dim = 1)x = torch.relu(self.fcl(x))x = self.fc2(x)return x
# 当前模型对数据集学几次
max_epochs = 5
# 每次训练模型对多少张图片进行训练
batch_size = 16# data
# ToTensor 把当前数据类型转换为 Tensor
# Compose是组合多个转换操作的类
transform = transforms.Compose([transforms.ToTensor()])# 55000
trainset = torchvision.datasets.MNIST(root='./data',train=True,download=True,transform=transform)
train_loader = torch.utils.data.DataLoader(trainset,batch_size=batch_size,shuffle=True)
testset = torchvision.datasets.MNIST(root='./data',train=False,download=True,transform=transform)
test_loader = torch.utils.data.DataLoader(testset,batch_size=batch_size,shuffle=True)
# net init
net = Net()
net.to(device)# nn.MSE
loss = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=0.0001)def train():acc_num=0for epoch in range(max_epochs):for i,(data,label) in enumerate(train_loader):data = data.to(device)label = label.to(device)optimizer.zero_grad()output = net(data)Loss = loss(output,label)Loss.backward()optimizer.step()pred_class = torch.max(output,dim=1)[1]acc_num += torch.eq(pred_class,label.to(device)).sum().item()train_acc = acc_num / len(trainset)net.eval()acc_num = 0.0best_acc = 0with torch.no_grad():for val_data in test_loader:val_image,val_label = val_dataoutput = net(val_image.to(device))predict_y = torch.max(output , dim=1)[1]acc_num += torch.eq(predict_y,val_label.to(device)).sum().item()val_acc = acc_num/len(testset)print(train_acc,val_acc)if val_acc > best_acc:torch.save(net.state_dict(),'./minst.pth')best_acc = val_accacc_num = 0train_acc = 0test_acc = 0print('done')train()
0.1348 0.3007
done
0.4361 0.5548
done
0.5870666666666666 0.6335
done
0.6435333333333333 0.672
done
0.67915 0.7011
done
相关文章:
机器学习基础-手写数字识别
手写数字识别,计算机视觉领域的Hello World利用MNIST数据集,55000训练集,5000验证集。Pytorch实现神经网络手写数字识别感知机与神经元、权重和偏置、神经网络、输入层、隐藏层、输出层mac gpu的使用本节就是对Pytorch可以做的事情有个直观的…...
idea 插件推荐(持续更新)
文章目录 Material Theme UIcodeium(建议有梯子的使用)Key Promoter XCodeGlanceRainbow BracketsMarkdown NavigatorRestfulToolkitString Manipulation Material Theme UI 谁不想拥有一款狂拽炫酷 吊炸天 的编码主题呢,给你推荐Material Theme UI Plugin Material Theme UI是…...
实现Promise所有核心功能和方法
一直以来对Promise只是会用简单的方法,例如then,catch等,对于其余各种方法也只是简单了解,这次想要通过实现Promise来加深对Promise的使用 话不多说,直接开始,简单粗暴一步步来 一:了解Promise …...
学习总结1
Vue的学习 Vue是一套用于构建用户界面的渐进式JavaScript框架; Vue中关键的几个概念:组件化,MVVM,响应式,和生命周期。 1. 组件化: 在Vue框架中,允许你将界面拆分为小的,独立的可…...
使用 Apache Camel 和 Quarkus 的微服务(二)
【squids.cn】 全网zui低价RDS,免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 在本系列的第一部分,我们看到了一个简化版的基于微服务的转账应用程序,该应用程序使用Apache Camel和AWS SDK(软件开发套件…...
pid-limit参数实验
fork炸弹命令 :(){ :|:& };: 可以看到,如果docker没有限制,会遭到fork炸弹恶意 参考 https://www.cyberciti.biz/faq/understanding-bash-fork-bomb/...
jvm--执行引擎
文章目录 1. 执行引擎的工作流程2. 解释器、JIT及时编译器3. 热点代码及探测技术4. HotSpotVM 中 JIT 分类 执行引擎属于 JVM 的下层,里面包括解释器、及时编译器、垃圾回收器 JVM 的主要任务是负责 装载字节码到其内部,但字节码并不能够直接运行在操作…...
day13|二叉树理论
一、二叉树的定义 //定义一个二叉树:使用链式存储 public class TreeNode {int val; // 节点的值TreeNode left; // 左子节点TreeNode right; // 右子节点public TreeNode() {}// 构造函数,初始化节点值public TreeNode(int val){this.valval;}// 构造函…...
php+html+js+ajax实现文件上传
phphtmljsajax实现文件上传 目录 一、表单单文件上传 1、上传页面 2、接受文件上传php 二、表单多文件上传 1、上传页面 2、接受文件上传php 三、表单异步xhr文件上传 1、上传页面 2、接受文件上传php 四、表单异步ajax文件上传 1、上传页面 2、接受文件上传ph…...
日期时间参数,格式配置(SpringBoot)
介绍 在SpringBoot项目中,接口中的日期和时间类型的参数,配置格式。 日期格式 接口中常用的日期时间格式有两种: 字符串(比如:yyyy-MM-dd HH:mm:ss)时间戳(比如:1696839876955&a…...
JAVA 泛型的定义以及使用
泛型类 /*** <T> 为该类定义泛型,可以是一个或多个<T,...>* 定义的泛型可以在类中作为:* 类变量类型: T data* 类方法的入参以及返回类型 public void setData(T data),public T getData();次数以set&a…...
Day-08 基于 Docker安装 Nginx 镜像-负载均衡
1、反向代理后,自然而然就引出了负载均衡,下面简单实现负载均衡的效果; 2、实现该效果需要再添加一个 Nginx ,所以要增加一个文件夹。 /home|---mutou|----nginx|----conf.d|----html|----conf.d2|----html3 1.创建 html3 文件夹, 新建 index…...
3、在 CentOS 8 系统上安装 PostgreSQL 15.4
PostgreSQL,作为一款备受欢迎的开源关系数据库管理系统(RDBMS),已经存在了三十多年的历史。它提供了SQL语言支持,用于管理数据库和执行CRUD操作(创建、读取、更新、删除)。 由于其卓越的健壮性…...
sap 一次性供应商 供应商账户组 临时供应商 <转载>
原文链接:https://blog.csdn.net/xianshengsun/article/details/132620593 sap中有一次性供应商这个名词,一次性供应商和非一次性供应商又有什么区别呢? 有如何区分一次性供应商和非一次性供应商呢? 1 区分一次性供应商和非一次性…...
总结html5中常见的选择器
HTML5并没有引入新的选择器类型,它仍然使用CSS选择器来选择和操作HTML元素。HTML5中仍然可以使用CSS2和CSS3中定义的各种选择器。以下是HTML5中常见的选择器类型: 1. 元素选择器(Element Selector):使用元素名称作为选…...
Java基础面试-JDK JRE JVM
详细解释 JDK(Java Devalpment Kit)java 开发工具 JDK是Java开发工具包,它是Java开发者用于编写、编译、调试和运行Java程序的核心组件。JDK包含了Java编程语言的开发工具和工具集,以及Java标准库和其他一些必要的文件。JDK中的…...
OpenCV实现图像傅里叶变换
傅里叶变换 dftcv.dft(img_float32,flagscv.DFT_COMPLEX_OUTPUT): flags:标志位,指定变换类型,cv.DFT_COMPLEX_OUTPUT会返回复数结果。 傅立叶变换,将输入的图像从空间域转换到频率域。 返回结果: 此函数返回一个复杂数值数组,…...
快手新版本sig3参数算法还原
Frida Native层主动调用 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81…...
Linux 安全 - LSM机制
文章目录 前言一、LSM起源二、LSM简介2.1 MAC2.2 LSM特征 三、Major and Minor LSMs3.1 Major LSMs3.2 Minor LSMs3.3 BPF LSM 四、LSM 框架五、LSM Capabilities Module六、LSM hooks 说明参考资料 前言 在这两篇文章中介绍了 Linux 安全机制 Credentials : Linu…...
uni-app:实现简易自定义下拉列表
效果 代码 <template><view><view class"dropdown-trigger" tap"showDropdown">{{ selectedItem }}</view><view class"dropdown-list" v-if"showList"><view class"dropdown-item" v-f…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
