图像二值化阈值调整——cv2.threshold方法
二值化阈值调整:调整是指在进行图像二值化处理时,调整阈值的过程。阈值决定了将图像中的像素分为黑色和白色的界限,大于阈值的像素被设置为白色,小于等于阈值的像素被设置为黑色。
方法一:
取阈值为 127,相当于 0~255 的中位数(0+255)/2 = 127,灰度值大于等于 127 的设置为 0,灰度值大于 127 的设置为 255,这种方法简单便捷,缺点就是阈值设置的太死板了,对于不同的照片,效果肯定不同。检索资料的时候发现,还有人把这种方法称为 史上最弱智的二值处理方法,没办法,弱智方法也得学啊。
该方法会使用到一个 threshold 方法,threshold 方法的语法格式如下:
cv2.threshold(src, thresh, maxval, type[, dst]) -> retval, dst
参数说明如下:
- src 输入图,中只能输入单通道图,一般就是灰度图;
- thresh 阈值;
- maxval 最大值,当像素超过了阈值(或者小于阈值)时所赋予的值;
- type - 二值化操作的类型,有 5 种,在下文描述;
- dst 输出数组/图像(与 src 相同大小和类型以及相同通道数的数组/图像)。
返回值 retval 阈值 thresh, dst 经过处理的图像。
二值化操作类型type参数(阈值类型):
- 二进制阈值化 THRESH_BINARY,过门限的值为最大值,其他值为 0;
- 反二进制阈值化 THRESH_BINARY_INV,过门限的值为 0,其他值为最大值;
- 截断阈值化 THRESH_TRUNC,过门限的值为门限值,其他值不变;
- 阈值化为 0 THRESH_TOZERO,过门限的值不变,其他设置为 0;
- 反阈值化为 0 THRESH_TOZERO_INV,过门限的值为 0,其他不变。
以上内容也叫做全局阈值。参考代码:
import cv2
import matplotlib.pylab as pltdef main2():img = cv2.imread('6.jpg', 0)ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)ret, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)ret, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)titles = ['Original Image', 'BINARY','BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2, 3, i+1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main2()

当然,也可以把代码里面的127改成别的,这就叫手动选择阈值。
方法二:
计算像素点矩阵中的所有像素点的灰度值的平均值 avg,让每一个像素点与 avg 比较,小于等于 avg 的像素点就为 0(黑色),大于 avg 的像素点为 255(白色),这种方法看起来靠谱了一些。
使用该方法之前需要先遍历图像的所有灰度值,才能计算出平均值。下图所示的阈值计算结果是151.参考代码如下:
import cv2def main():img = cv2.imread("1.TIF", 0)height, width = img.shape# 灰度值总和px_t = 0for i in range(height):for j in range(width):px_t += img[i][j]print(px_t)# 求像素平均值avg_thresh = int(px_t / (height * width))print(avg_thresh)thresh, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)cv2.imshow("dst", dst)cv2.waitKey()cv2.imwrite("2.jpg",dst)if __name__ == "__main__":main()

相关文章:
图像二值化阈值调整——cv2.threshold方法
二值化阈值调整:调整是指在进行图像二值化处理时,调整阈值的过程。阈值决定了将图像中的像素分为黑色和白色的界限,大于阈值的像素被设置为白色,小于等于阈值的像素被设置为黑色。 方法一: 取阈值为 127,…...
【C++代码】背包问题,完全背包,多重背包,打家劫舍,动态规划--代码随想录
爬楼梯(plus) 一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢? 1阶,2阶,… m阶就是物品,楼顶就是背包。每一阶可以重复使用,例如…...
阿里云创始人王坚:云计算和GPT的关系,就是电和电机的关系
10月31日,在2023云栖大会,中国工程院院士、阿里云创始人王坚以《云计算的第三次浪潮》为主题发表演讲,他认为人工智能和云计算的结合,带来云计算的第三次浪潮,它不会在一年、两年完成,它可能会给我们十年、…...
python爬取豆瓣电影Top250数据
本次爬虫案例使用Python语言编写,使用了requests库进行网页请求,使用了BeautifulSoup库进行网页解析,使用了openpyxl库进行数据的保存。 案例中的爬虫目标是豆瓣电影Top250,通过循环访问不同页面进行数据的爬取。在每个页面上&am…...
关键路径及关键路径算法[C/C++]
文章目录 关键路径引例AOE网关键路径与关键活动关键路径算法引例与原理关键路径算法的实现边的存储结构代码实现运行示例 关键路径 关于拓扑排序的内容见拓扑排序详解 引例 通过拓扑排序我们可以解决一个工程是否可以顺序进行的问题,拓扑排序把一个工程分成了若干…...
nginx http 跳转到https
改 Nginx 配置文件 在您安装了 SSL 证书之后,您需要修改 Nginx 的配置文件以启用 HTTPS 和 HTTP 自动跳转 HTTPS。 打开 Nginx 配置文件(通常位于 /etc/nginx/nginx.conf),找到您的网站配置块。在该配置块中添加以下内容&#x…...
可靠的互联网兼职平台,平常可以做副业充实生活
在互联网时代,越来越多的人开始通过网络来寻找兼职副业的机会,能够更灵活地安排自己的时间,实现自己的收入增值。那么找到一个正规可靠的线上兼职平台就是一个比较重要的事情,这里分享几个正规靠谱的线上兼职副业平台,…...
云安全—K8s APi Server 6443 攻击面
0x00 前言 在未授权的一文中,详细描述了k8s api中的8080端口未授权的问题,那么本篇主要来说6443端口的利用。 0x01 API连接攻击面 1.匿名用户访问 匿名开放方式:kubectl create clusterrolebinding cluster-system-anonymous --clusterro…...
【案例实战】NodeJS+Vue3+MySQL实现列表查询功能
这篇文章,给大家带来一个列表查询的功能,从前端到后端的一个综合案例实战。 采用vue3作为前端开发,nodejs作为后端开发。 首先我们先来看一下完成的页面效果。点击分页,可以切换到上一页、下一页。搜索框可以进行模糊查询。 后端…...
Google play开发者账号被封的几种常见原因及相关解决思路
在Google paly上,每天都有大量的应用被成功发布,同时也有很多开发者账号被封禁。特别是在今年的十月份之前,谷歌的"封号潮"给很多开发者带来了沉重的打击。不过,令人欣慰的是,自十月份之后,情况逐…...
深入理解计算机系统CS213学习笔记
Lecture 01 1. 计算机表示数字 int 整数运算可能会出现错误,超过32位时会出现溢出。 float 浮点数不适用结合律,因为浮点数表示的精度有限。 根其原因,是用有限的位数表示无限的数字空间。 2.利用分层的存储系统,使程序运行更…...
【设计模式】第8节:结构型模式之“适配器模式”
一、简介 适配器模式是用来做适配的,它将不兼容的接口转换为可兼容的接口,让原本由于接口不兼容而不能一起工作的类可以一起工作。 适配器模式角色: 请求者client:调用服务的角色目标Target:定义了Client要使用的功…...
Stable Diffusion WebUI扩展openpose-editor如何使用
先上地址: GitHub - fkunn1326/openpose-editor: Openpose Editor for AUTOMATIC1111s stable-diffusion-webuiOpenpose Editor for AUTOMATIC1111s stable-diffusion-webui - GitHub - fkunn1326/openpose-editor: Openpose Editor for AUTOMATIC1111s stable-diffusion-webu…...
企业网络带宽使用情况检查技巧
想要提高网络性能的企业通常会考虑限制对占用带宽的应用程序(如社交媒体和视频流应用程序)的访问,但对于那些真正需要获得高效网络的人来说,这还不够,您需要定期跟踪带宽使用情况。 虽然有许多工具可以帮助您检查网络…...
C/C++笔试易错与高频题型图解知识点(三)——数据结构部分(持续更新中)
目录 1. 排序 1.1 冒泡排序的改进 2. 二叉树 2.1 二叉树的性质 3. 栈 & 队列 3.1 循环队列 3.2 链式队列 4. 平衡二叉搜索树——AVL树、红黑树 5 优先级队列(堆) 1. 排序 1.1 冒泡排序的改进 下面的排序方法中,关键字比较次数与记录的初…...
Intel oneAPI笔记--oneAPI简介、SYCL编程简介
oneAPI简介 Intel oneAPI是Intel提供的统一编程模型和软件开发框架。 它旨在简化可充分利用英特尔各种硬件架构(包括 CPU、GPU 和 FPGA)的应用程序的开发 oneAPI一个重要的特性是开放性,支持多种类型的架构和不同的硬件供应商,是…...
Spring IOC - ConfigurationClassPostProcessor源码解析
上文提到Spring在Bean扫描过程中,会手动将5个Processor类注册到beanDefinitionMap中,其中ConfigurationClassPostProcessor就是本文将要讲解的内容,该类会在refresh()方法中通过调用invokeBeanFactoryPosstProcessors(beanFactory)被调用。 5…...
Android OpenGL ES 2.0入门实践
本文既然是入门实践,就先从简单的2D图形开始,首先,参考两篇官方文档搭建个框架,便于写OpenGL ES相关的代码:构建 OpenGL ES 环境、OpenGL ES 2.0 及更高版本中的投影和相机视图。 先上代码,代码效果如下图…...
sql语句性能进阶必须了解的知识点——索引失效分析
在前面的文章中讲解了sql语句的优化策略 sql语句性能进阶必须了解的知识点——sql语句的优化方案-CSDN博客 sql语句的优化重点还有一处,那就是—— 索引!好多sql语句慢的本质原因就是设置的索引失效或者根本没有建立索引!今天我们就来总结一…...
ctfhub技能树web题目全解
Rce 文件包含 靶场环境 重点是这个代码,strpos,格式是这样的strpoc(1,2,3) 1是要搜索的字符串,必须有;2是要查询的字符串,必须有;3是在何处开始查询&#…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
