面试算法49:从根节点到叶节点的路径数字之和
题目
在一棵二叉树中所有节点都在0~9的范围之内,从根节点到叶节点的路径表示一个数字。求二叉树中所有路径表示的数字之和。例如,图8.4的二叉树有3条从根节点到叶节点的路径,它们分别表示数字395、391和302,这3个数字之和是1088。

分析
首先考虑如何计算路径表示的数字。顺着指向子节点的指针路径向下遍历二叉树,每到达一个节点,相当于在路径表示的数字末尾添加一位数字。例如,在最开始到达根节点时,它表示数字3。然后到达节点9,此时路径表示数字39(3×10+9=39)。然后向下到达节点5,此时路径表示数字395(39×10+5=395)。
这就是说,每当遍历到一个节点时都计算从根节点到当前节点的路径表示的数字。如果这个节点还有子节点,就把这个值传下去继续遍历它的子节点。先计算到当前节点为止的路径表示的数字,再计算到它的子节点的路径表示的数字,这实质上就是典型的二叉树前序遍历。
解
public class Test {public static void main(String[] args) {TreeNode node3 = new TreeNode(3);TreeNode node9 = new TreeNode(9);TreeNode node0 = new TreeNode(0);TreeNode node5 = new TreeNode(5);TreeNode node1 = new TreeNode(1);TreeNode node2 = new TreeNode(2);node3.left = node9;node3.right = node0;node9.left = node5;node9.right = node1;node0.right = node2;int result = sumNumbers(node3);System.out.println(result);}public static int sumNumbers(TreeNode root) {return dfs(root, 0);}private static int dfs(TreeNode root, int sum) {if (root == null) {return 0;}sum = sum * 10 + root.val;if (root.left == null && root.right == null) {return sum;}return dfs(root.left, sum) + dfs(root.right, sum);}
}
相关文章:
面试算法49:从根节点到叶节点的路径数字之和
题目 在一棵二叉树中所有节点都在0~9的范围之内,从根节点到叶节点的路径表示一个数字。求二叉树中所有路径表示的数字之和。例如,图8.4的二叉树有3条从根节点到叶节点的路径,它们分别表示数字395、391和302,这3个数字…...
http1,https,http2,http3总结
1.HTTP 当我们浏览网页时,地址栏中使用最多的多是https://开头的url,它与我们所学的http协议有什么区别? http协议又叫超文本传输协议,它是应用层中使用最多的协议, http与我们常说的socket有什么区别吗? …...
stable-diffusion-webui环境部署
stable-diffusion-webui环境部署 1. 环境创建2. 安装依赖库3.下载底模4. 获取lora参数文件5.运行代码6. 报错信息报错1报错2 1. 环境创建 创建虚拟环境 conda create -n env_stable python3.10.0进入虚拟环境 conda activate env_stableclone源码 git clone https://github.com…...
使用Ansible中的playbook
目录 1.Playbook的功能 2.YAML 3.YAML列表 4.YAML的字典 5.playbook执行命令 6.playbook的核心组件 7.vim 设定技巧 示例 1.Playbook的功能 playbook 是由一个或多个play组成的列表 Playboot 文件使用YAML来写的 2.YAML #简介# 是一种表达资料序列的格式,类似XML #特…...
模型应用系实习生-模型训练笔记(更新至线性回归、Ridge回归、Lasso回归、Elastic Net回归、决策树回归、梯度提升树回归和随机森林回归)
sklearn机械学习模型步骤以及模型 一、训练准备(x_train, x_test, y_train, y_test)1.1 导包1.2 数据要求1.21 导入数据1.22 数据类型查看检测以及转换1.22 划分数据 二、回归2.1 线性回归2.2 随机森林回归2.3 GradientBoostingRegressor梯度提升树回归2…...
【Verilog】7.2.1 Verilog 并行 FIR 滤波器设计
FIR(Finite Impulse Response)滤波器是一种有限长单位冲激响应滤波器,又称为非递归型滤波器。 FIR 滤波器具有严格的线性相频特性,同时其单位响应是有限长的,因而是稳定的系统,在数字通信、图像处理等领域…...
【音视频 | wav】wav音频文件格式详解——包含RIFF规范、完整的各个块解析、PCM转wav代码
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...
人工智能基础_机器学习012_手写梯度下降代码演示_手动写代码完成梯度下降_并实现梯度下降可视化---人工智能工作笔记0052
可以看到上面我们那个公式,现在我们用梯度下降实现一下,比如我们有一堆数据,但是没有方程的情况下,我们来看一下如果计算,对应的w值也就是seta值对吧,没有方程我们可以使用梯度下降 这里首先我们可以设置一个0.0001.我们知道梯度下降的公式, 梯度下降刚开始的时候,下降会快,然…...
Docker安装部署[8.x]版本Elasticsearch+Kibana+IK分词器
文章目录 Docker安装部署elasticsearch拉取镜像创建数据卷创建网络elasticsearch容器,启动!踩坑:虚拟机磁盘扩容 Docker安装部署Kibana拉取镜像Kibana容器,启动! 安装IK分词器安装方式一:直接从github上下载…...
折纸达珠峰高度(forwhile循环)
对折0.1mm厚度的纸张多少次,高度可达珠峰高度8848180mm。 (本笔记适合熟悉循环和列表的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教程》,不仅…...
探索网络攻防技术:自学之道
在当今数字化时代,网络攻防技术的重要性日益凸显。无论是个人用户还是企业组织,都需要具备一定的网络安全意识和基本技能来应对日益复杂的网络威胁。自学网络攻防技术成为许多人的选择,今天我们将探讨如何高效、有序地自学网络攻防技术。 如果…...
图像二值化阈值调整——cv2.threshold方法
二值化阈值调整:调整是指在进行图像二值化处理时,调整阈值的过程。阈值决定了将图像中的像素分为黑色和白色的界限,大于阈值的像素被设置为白色,小于等于阈值的像素被设置为黑色。 方法一: 取阈值为 127,…...
【C++代码】背包问题,完全背包,多重背包,打家劫舍,动态规划--代码随想录
爬楼梯(plus) 一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢? 1阶,2阶,… m阶就是物品,楼顶就是背包。每一阶可以重复使用,例如…...
阿里云创始人王坚:云计算和GPT的关系,就是电和电机的关系
10月31日,在2023云栖大会,中国工程院院士、阿里云创始人王坚以《云计算的第三次浪潮》为主题发表演讲,他认为人工智能和云计算的结合,带来云计算的第三次浪潮,它不会在一年、两年完成,它可能会给我们十年、…...
python爬取豆瓣电影Top250数据
本次爬虫案例使用Python语言编写,使用了requests库进行网页请求,使用了BeautifulSoup库进行网页解析,使用了openpyxl库进行数据的保存。 案例中的爬虫目标是豆瓣电影Top250,通过循环访问不同页面进行数据的爬取。在每个页面上&am…...
关键路径及关键路径算法[C/C++]
文章目录 关键路径引例AOE网关键路径与关键活动关键路径算法引例与原理关键路径算法的实现边的存储结构代码实现运行示例 关键路径 关于拓扑排序的内容见拓扑排序详解 引例 通过拓扑排序我们可以解决一个工程是否可以顺序进行的问题,拓扑排序把一个工程分成了若干…...
nginx http 跳转到https
改 Nginx 配置文件 在您安装了 SSL 证书之后,您需要修改 Nginx 的配置文件以启用 HTTPS 和 HTTP 自动跳转 HTTPS。 打开 Nginx 配置文件(通常位于 /etc/nginx/nginx.conf),找到您的网站配置块。在该配置块中添加以下内容&#x…...
可靠的互联网兼职平台,平常可以做副业充实生活
在互联网时代,越来越多的人开始通过网络来寻找兼职副业的机会,能够更灵活地安排自己的时间,实现自己的收入增值。那么找到一个正规可靠的线上兼职平台就是一个比较重要的事情,这里分享几个正规靠谱的线上兼职副业平台,…...
云安全—K8s APi Server 6443 攻击面
0x00 前言 在未授权的一文中,详细描述了k8s api中的8080端口未授权的问题,那么本篇主要来说6443端口的利用。 0x01 API连接攻击面 1.匿名用户访问 匿名开放方式:kubectl create clusterrolebinding cluster-system-anonymous --clusterro…...
【案例实战】NodeJS+Vue3+MySQL实现列表查询功能
这篇文章,给大家带来一个列表查询的功能,从前端到后端的一个综合案例实战。 采用vue3作为前端开发,nodejs作为后端开发。 首先我们先来看一下完成的页面效果。点击分页,可以切换到上一页、下一页。搜索框可以进行模糊查询。 后端…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
