竞赛 题目:垃圾邮件(短信)分类 算法实现 机器学习 深度学习 开题
文章目录
- 1 前言
- 2 垃圾短信/邮件 分类算法 原理
- 2.1 常用的分类器 - 贝叶斯分类器
- 3 数据集介绍
- 4 数据预处理
- 5 特征提取
- 6 训练分类器
- 7 综合测试结果
- 8 其他模型方法
- 9 最后
1 前言
🔥 优质竞赛项目系列,今天要分享的是
基于机器学习的垃圾邮件分类
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
2 垃圾短信/邮件 分类算法 原理
垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;
网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。
将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。
2.1 常用的分类器 - 贝叶斯分类器
贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?
利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。
贝叶斯公式:
P(B|A)=P(A|B)*P(B)/P(A)
P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?
P(A|B)=当选择一号箱时,取出红色球的概率。
P(B)=一号箱的概率。
P(A)=取出红球的概率。
代入垃圾邮件识别:
P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?
P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?
P(B)=垃圾邮件总概率。
P(A)=“茶叶”在所有特征值中出现的概率。
3 数据集介绍
使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。
数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。
“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。
数据集可视化:
4 数据预处理
这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。
邮件大致内容如下图:
每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:
import re
import jieba
import codecs
import os
# 去掉非中文字符
def clean_str(string):string = re.sub(r"[^\u4e00-\u9fff]", " ", string)string = re.sub(r"\s{2,}", " ", string)return string.strip()def get_data_in_a_file(original_path, save_path='all_email.txt'):files = os.listdir(original_path)for file in files:if os.path.isdir(original_path + '/' + file):get_data_in_a_file(original_path + '/' + file, save_path=save_path)else:email = ''# 注意要用 'ignore',不然会报错f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')# lines = f.readlines()for line in f:line = clean_str(line)email += linef.close()"""发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多"""f = open(save_path, 'a', encoding='utf8')email = [word for word in jieba.cut(email) if word.strip() != '']f.write(' '.join(email) + '\n')print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')
然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:
def get_label_in_a_file(original_path, save_path='all_email.txt'):f = open(original_path, 'r')label_list = []for line in f:# spamif line[0] == 's':label_list.append('0')# hamelif line[0] == 'h':label_list.append('1')f = open(save_path, 'w', encoding='utf8')f.write('\n'.join(label_list))f.close()print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')
5 特征提取
将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。
TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:
在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。
import jieba
from sklearn.feature_extraction.text import TfidfVectorizerdef tokenizer_jieba(line):# 结巴分词return [li for li in jieba.cut(line) if li.strip() != '']def tokenizer_space(line):# 按空格分词return [li for li in line.split() if li.strip() != '']def get_data_tf_idf(email_file_name):# 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_spacevectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')content = open(email_file_name, 'r', encoding='utf8').readlines()x = vectoring.fit_transform(content)return x, vectoring
6 训练分类器
这里学长简单的给一个逻辑回归分类器的例子
from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as npif __name__ == "__main__":np.random.seed(1)email_file_name = 'all_email.txt'label_file_name = 'label.txt'x, vectoring = get_data_tf_idf(email_file_name)y = get_label_list(label_file_name)# print('x.shape : ', x.shape)# print('y.shape : ', y.shape)# 随机打乱所有样本index = np.arange(len(y)) np.random.shuffle(index)x = x[index]y = y[index]# 划分训练集和测试集x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)clf = svm.LinearSVC()# clf = LogisticRegression()# clf = ensemble.RandomForestClassifier()clf.fit(x_train, y_train)y_pred = clf.predict(x_test)print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))print('Accuracy:', metrics.accuracy_score(y_test, y_pred))
7 综合测试结果
测试了2000条数据,使用如下方法:
-
支持向量机 SVM
-
随机数深林
-
逻辑回归
可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。
8 其他模型方法
还可以构建深度学习模型
网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。
第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。
def get_embedding_vectors(tokenizer, dim=100):embedding_index = {}with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:for line in tqdm.tqdm(f, "Reading GloVe"):values = line.split()word = values[0]vectors = np.asarray(values[1:], dtype='float32')embedding_index[word] = vectorsword_index = tokenizer.word_indexembedding_matrix = np.zeros((len(word_index)+1, dim))for word, i in word_index.items():embedding_vector = embedding_index.get(word)if embedding_vector is not None:# words not found will be 0sembedding_matrix[i] = embedding_vectorreturn embedding_matrixdef get_model(tokenizer, lstm_units):"""Constructs the model,Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation"""# get the GloVe embedding vectorsembedding_matrix = get_embedding_vectors(tokenizer)model = Sequential()model.add(Embedding(len(tokenizer.word_index)+1,EMBEDDING_SIZE,weights=[embedding_matrix],trainable=False,input_length=SEQUENCE_LENGTH))model.add(LSTM(lstm_units, recurrent_dropout=0.2))model.add(Dropout(0.3))model.add(Dense(2, activation="softmax"))# compile as rmsprop optimizer# aswell as with recall metricmodel.compile(optimizer="rmsprop", loss="categorical_crossentropy",metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])model.summary()return model
训练结果如下:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883
9 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

竞赛 题目:垃圾邮件(短信)分类 算法实现 机器学习 深度学习 开题
文章目录 1 前言2 垃圾短信/邮件 分类算法 原理2.1 常用的分类器 - 贝叶斯分类器 3 数据集介绍4 数据预处理5 特征提取6 训练分类器7 综合测试结果8 其他模型方法9 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 基于机器学习的垃圾邮件分类 该项目…...

wpf devexpress项目中添加GridControl绑定数据
本教程讲解了如何添加GridControl到wpf项目中并且绑定数据 原文地址Lesson 1 - Add a GridControl to a Project and Bind it to Data | WPF Controls | DevExpress Documentation 1、使用 DevExpress Template Gallery创建一个新的空白mvvm应用程序,这个项目包括了…...

2023亚太杯数学建模A题思路解析
文章目录 0 赛题思路1 竞赛信息2 竞赛时间3 建模常见问题类型3.1 分类问题3.2 优化问题3.3 预测问题3.4 评价问题 4 建模资料5 最后 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 竞赛信息 2023年第十三…...

Spark3.0中的AOE、DPP和Hint增强
1 Spark3.0 AQE Spark 在 3.0 版本推出了 AQE(Adaptive Query Execution),即自适应查询执行。AQE 是 Spark SQL 的一种动态优化机制,在运行时,每当 Shuffle Map 阶段执行完毕,AQE 都会结合这个阶段的统计信…...

算法笔记-第五章-质因子分解
算法笔记-第五章-质因子分解 小试牛刀质因子2的个数丑数 质因子分解最小最大质因子约数个数 小试牛刀 质因子2的个数 #include<cstdio> int main() {int n; scanf_s("%d", &n); int count 0; while (n % 2 0) {count; n / 2; }printf("%…...

适用于WPF的设计模式
适用于WPF的设计模式 讨论“XAML能不能写逻辑代码”这个问题。我发现这是个有歧义的问题。这个问题可以有两种意思: XAML能不能用来写逻辑代码? XAML文件里能不能包含逻辑代码? 对于第一种意思——XAML是一种声明性语言,就是用来…...
C++与多态
多态的本质是允许对象以其实际类型的行为方式来操作,而不仅仅是其静态类型所声明的方式。 多态是面向对象编程中的一种核心概念,它允许对象根据其具体类型执行相应的操作,而不是其声明的类型。我们可以使用一个经典的动物的例子来说明这一点。…...

ios 对话框UIAlertController放 tableview
//强弱引用 #define kWeakSelf(type)__weak typeof(type)weak##type type; -(void) showUIAlertTable {kWeakSelf(self)UIAlertController *alert [UIAlertController alertControllerWithTitle:NSLocalizedString("select_stu", nil) message:nil prefer…...
警告:新版Outlook会向微软发送密码、邮件和其他数据
新的免费Outlook会将敏感数据发送给 Microsoft。 在没有通知或询问的情况下,Microsoft 授予自己对新 Outlook 用户的 IMAP 和 SMTP 访问数据的完全访问权限。也就是说,当用户设置 IMAP 帐户时,新的 Outlook 会将访问数据和服务器信息发送给 …...
数据结构C语言--基础实验
实验1 线性表的顺序实现 1.!顺序表的倒置 /**********************************/ /*文件名称:lab1-01.c */ /**********************************/ /*基于sequlist.h中定义的顺序表,编写算法函数reverse(sequence_list *L)&…...

wireshark抓包并进行Eigrp网络协议分析
路由协议 Eigrp EIGRP:Enhanced Interior Gateway Routing Protocol 即 增强内部网关路由协议。也翻译为 加强型内部网关路由协议。 EIGRP是Cisco公司的私有协议(2013年已经公有化)。 EIGRP结合了链路状态和距离矢量型路由选择协议的Cisco专用协议&a…...

力扣刷题-二叉树-二叉树的层序遍历(相关题目总结)
思路 层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。 需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的…...
fundamental notes in 3D math
平面方程 a x b y c z d axbycz d axbyczd, 法向量 a , b , c a,b,c a,b,c, 点到平面的距离为 d / s q r t ( a 2 b 2 c 2 ) d / sqrt(a^2 b^2 c^2) d/sqrt(a2b2c2) , 距离可为正, 为负, 为正表示跟法向量方向一致, 为负表示相反 点 ( x o , y o , z o ) (x_o, y_o, z…...

【Java 进阶篇】JQuery DOM操作:舞动网页的属性魔法
在前端的舞台上,属性操作是我们与HTML元素进行互动的关键步骤之一。而JQuery,这位前端开发的巫师,通过简洁而强大的语法,为我们提供了便捷的属性操作工具。在这篇博客中,我们将深入研究JQuery DOM操作中的属性操作&…...

腾讯云5年云服务器还有吗?腾讯云5年时长服务器入口在哪?
如果你是一名企业家或者是一个热衷于数字化转型的创业者,那么腾讯云最近推出的一项优惠活动绝对不会让你无动于衷。现在,腾讯云正在大力推广一项5年特价云服务器活动,只需要花费3879元,你就可以享受到腾讯云提供的优质服务。 腾讯…...
odoo在iot领域的发展情况
Odoo 是一个全面的集成商业管理软件套装,主要提供企业资源规划 (ERP)、客户关系管理 (CRM)、电子商务、会计、库存管理等功能。在 IoT(物联网)领域,Odoo 侧重于通过提供一个中心化的平台来整合多方面的业务流程,包括生…...
Paas-云原生-容器-编排-持续部署
了解云原生 云原生架构让企业的基础设施,从简单的资源池化,转向以应用为中心,为应用赋能的敏捷、自运维、安全的云原生基础设施。以应用为中心的云原生基础设置,可以支持多种类型的应用,如微服务应用,中间件应用和AI 应用;可以提升应用交付效率,简化应用管理的复杂度;…...

sass 生成辅助色
背景 一个按钮往往有 4 个状态。 默认状态hover鼠标按下禁用状态 为了表示这 4 个状态,需要设置 4 个颜色来提示用户。 按钮类型一般有 5 个: 以 primary 类型按钮为例,设置它不同状态下的颜色: <button class"btn…...

DevEco Studio开发工具下载、安装(HarmonyOS开发)_For Mac
一、说明 初学HarmonyOS开发,DevEco Studio开发工具的安装和使用是必须的。 (注:不多废话,跟着下面流程操作下载、安装DevEco Studio即可。) 二、下载DevEco Studio 1.官网下载地址: https://developer.…...

按键精灵中的字符串常用的场景
在使用按键精灵编写脚本时,与字符串有关的场景有以下几种: 1. 用时间字符串记录脚本使用截止使用时间 Dim localTime "2023-11-12 00:15:14" Dim networkTime GetNetworkTime() TracePrint networkTime If networkTime > localTime The…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...