公共部门生成式人工智能的未来
作者:Dave Erickson
最近,我与 IDC Government Insights 研究副总裁阿德莱德·奥布莱恩 (Adelaide O’Brien) 坐下来讨论了全球公共部门生成式人工智能的当前和未来状况。 完整的对话可以按需查看,但我也想强调讨论中的一些要点。 我们的目标是讨论我们现在看到的用例、公共组织面临的障碍,并交流组织如何利用生成式人工智能为员工、选民和更大的数字化转型带来的价值的最佳实践。
公共部门的生成式人工智能:现状
IDC 研究表明,59% 的政府机构正处于其组织内生成式 AI 使用的初级阶段(相比之下,只有 16% 的政府机构正在 “大力投资”)。展望未来,IDC 分享了有关公共部门领导者如何看待他们的近期生成式人工智能目标路线图的更多见解:
- 全球 62% 的政府表示,他们将在未来 12 个月内在客户服务和支持中使用人工智能。
- 全球 49% 的教育机构表示,对话式应用程序(例如聊天机器人和语音机器人)最有希望在短期内使用。
更进一步,IDC 根据其研究以及与政府客户的咨询对话,概述了公共部门组织在未来几年可能采用和整合生成式人工智能的进展情况。
公共部门生成式人工智能用例的 3 个领域
IDC 根据组织成熟度级别将政府用例分为三个阶段或范围。 与一些着眼于生成式人工智能集成的收入潜力的私营部门同行不同,到目前为止,公共部门组织正在采取更加谨慎的 “爬行-走-跑” 方法。
第一阶段:根据 IDC 的说法,第一个阶段是在未来一年左右发生渐进式创新,因为组织主要在内部测试生成式人工智能的领域。 最初,用例侧重于员工生产力和满意度,例如围绕内部合同管理、采购和通过沙箱环境创建代码的试点计划。 换句话说,采取复杂、重复的以数据为中心的任务,并通过生成人工智能应用程序结合机构的专有数据来简化它们。 一旦这些试点计划启动,组织计划扩展到影响外部利益相关者的用例,例如通过将选民与个性化的相关数据连接起来来改善选民的帮助台或呼叫中心体验。
第二阶段:一旦组织对第一阶段发生的生成式人工智能文化转变感到相当满意,用例就可以扩展到更具颠覆性的创新。 IDC 预计这一前景将在未来几年内普遍存在。 这里的用例连接 “前台到后台” 并利用智能自动化。 示例包括关键基础设施保护、用于调查的跨机构数据共享以及福利欺诈保护。
第三阶段:IDC 框架的第三个也是最后一个阶段的用例继续扩大范围,包括新的业务模式和跨复杂生态系统的集成。 在这里,各组织正在围绕数字立法、国家情报优势和智能互联校园等系统性主题进行整体规划
大规模生成人工智能需要安全和信任
尽管生成式人工智能前景广阔,但领导者也面临着数据隐私、员工满意度以及道德与合规性方面的担忧。 IDC 数据显示,43% 的全球政府领导人担心生成式人工智能会危及他们对数据和知识产权的控制,41% 的人担心生成式人工智能的使用会让他们面临品牌和监管风险。
对于公共部门来说,安全和信任对于任何生成式人工智能的实施都是至关重要的 —— 对私营部门合作伙伴的信任,对政策和道德准则的信任,以及对私人数据保密的信任。 正如阿德莱德·奥布莱恩 (Adelaide O’Brien) 指出的那样,“政府只有以信任为中心,才能大规模提供新一代人工智能价值。” 对于公共部门组织来说,这意味着对负责任的人工智能的政策和指南进行战略思考,包括:
- 为整个组织制定人工智能路线图
- 设计智能架构
- 绘制实施和成功所需的技能
- 确保你的敏感数据不会用于训练大型语言模型 (LLM)
- 将数据保存在主权领土上
- 确保你拥有自己的加密密钥
上述所有考虑因素的关键是 “人机交互” 方法,该方法可确保生成式人工智能输出经过人类交叉检查是否存在错误信息,特别是考虑到生成式人工智能产生幻觉的可能性。
使用检索增强生成(RAG)来使得模型着地
IDC 指出,全球 36% 的政府领导人担心生成式人工智能使用的准确性或潜在毒性(偏差、输出中的幻觉)。 为了确保生成式 AI 输出尽可能准确和及时,IDC 和 Elastic® 都建议使用检索增强生成 (retrieval augmented generation - RAG)。 RAG 是一种自然语言处理技术,使组织能够将自己的专有数据与生成式人工智能结合使用,以提高内容输出的质量。 通过利用你自己的特定领域数据,RAG 为生成式 AI 搜索查询提供相关的内部上下文,从而提高了准确性并减少了幻觉,为 LLM 奠定了基础。
RAG 与 Elastic 如何使公共部门受益
- 基于事实:使用 Elastic 中的同步数据获得准确、最新的特定于任务的结果,这些结果通过上下文窗口传递到生成式 AI 模型。
- 实现卓越相关性的灵活性:将你自己的 transformer 模型引入 Elastic,与第三方模型集成,或使用 Elastic 的 Learned Sparse EncodeR (ELSER)。
- 隐私和安全:应用 Elastic 对聊天和问答应用程序基于角色的访问控制的本机支持。
- 成本效益:使用较小的 LLMs,与微调或依赖基于 LLM 的知识相比,推理成本降低了两个数量级。
聆听完整的线上炉边聊天 (fireside chat)
立即查看与 IDC 的整个对话。
本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。
在这篇博文中,我们可能使用或引用了第三方生成人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。
Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标记是 Elasticsearch N.V. 在美国和其他国家/地区的商标、徽标或注册商标。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。
原文:The future of generative AI in public sector | Elastic Blog
相关文章:

公共部门生成式人工智能的未来
作者:Dave Erickson 最近,我与 IDC Government Insights 研究副总裁阿德莱德奥布莱恩 (Adelaide O’Brien) 坐下来讨论了全球公共部门生成式人工智能的当前和未来状况。 完整的对话可以按需查看,但我也想强调讨论中的一些要点。 我们的目标是…...

【报名】2023产业区块链生态日暨 FISCO BCOS 开源六周年生态大会
作为2023深圳国际金融科技节系列活动之一,由深圳市地方金融监督管理局指导,微众银行、金链盟主办的“2023产业区块链生态日暨FISCO BCOS开源六周年生态大会”将于12月15日下午14:00在深圳举办。 今年的盛会将进一步升级,以“FISCO BCOS和TA的…...

MySQL之性能分析和系统调优
MySQL之性能分析和系统调优 性能分析 查看执行计划 EXPLAIN EXPLAIN作为MySQL的性能分析神器,可以用来分析SQL执行计划,需要理解分析结果可以帮助我们优化SQL explain select … from … [where ...]TABLE 表名 查询的每一行记录都对于着一张表 id 该…...

时间复杂度为 O(n^2) 的排序算法 | 京东物流技术团队
对于小规模数据,我们可以选用时间复杂度为 O(n2) 的排序算法。因为时间复杂度并不代表实际代码的执行时间,它省去了低阶、系数和常数,仅代表的增长趋势,所以在小规模数据情况下, O(n2) 的排序算法可能会比 O(nlogn) 的…...

关于前端学习的思考-内边距、边框和外边距
从最简单的盒子开始思考 先把实际应用摆出来: margin:居中,控制边距。 padding:控制边距。 border:制作三角形。 盒子分为内容盒子,内边距盒子,边框和外边距。 如果想让块级元素居中&#…...

【linux】/etc/security/limits.conf配置文件详解、为什么限制、常见限制查看操作
文章目录 一. limits.conf常见配置项详解二. 文件描述符(file descriptor)简述三. 为什么限制四. 相关操作1. 展示当前资源限制2. 查看系统当前打开的文件描述符数量3. 查看某个进程打开的文件描述符数量4. 各进程占用的文件描述符 /etc/security/limits…...

Windows系统下更新后自带的画图软件出现马赛克bug
一.bug的样子🍗 在使用橡皮后,原来写的内容会变成马赛克。而我们希望它是纯白色的。 二.解决方法🍗 第一步 第二步 第三步 三. 解决后的效果🍗 用橡皮擦随便擦都不会出现马赛克了。 更新过后,想用win自带的画图软件会出…...

[HTML]Web前端开发技术6(HTML5、CSS3、JavaScript )DIV与SPAN,盒模型,Overflow——喵喵画网页
希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的…...

SQL练习
建数据库: mysql> create database worker; Query OK, 1 row affected (0.00 sec) mysql> CREATE TABLE worker (-> 部门号 int(11) NOT NULL,-> 职工号 int(11) NOT NULL,-> 工作时间 date NOT NULL,-> 工资 float(8,2) NOT NULL,-> 政治面貌…...

创始人于东来:胖东来员工不想上班,请假不允许不批假!
12月2日早晨,一则关于“胖东来员工不想上班请假不允许不批假”的新闻登上了热搜,引起了广泛关注。熟悉胖东来的网友们可能知道,这并不是这家企业第一次成为热搜的焦点。据白鹿视频12月1日报道,11月25日,河南许昌的胖东…...

C++学习之路(十五)C++ 用Qt5实现一个工具箱(增加16进制颜色码转换和屏幕颜色提取功能)- 示例代码拆分讲解
上篇文章,我们用 Qt5 实现了在小工具箱中添加了《Base64图片编码预览功能》功能。为了继续丰富我们的工具箱,今天我们就再增加两个平时经常用到的功能吧,就是「 16进制颜色码转RGB文本 」和 「屏幕颜色提取」功能。下面我们就来看看如何来规划…...

【STM32】EXTI外部中断
1 中断系统 1.1 中断简介 中断:在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当前正在运行的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继续运行。 比如&a…...

Linux系统的常见命令十三,显示系统进程状态、文件权限、修改文件或目录所有者和所属组命令(ps、chmod和chown)
本文主要介绍Linux系统的显示系统进程状态、文件权限、修改文件或目录所有者和所属组命令,(ps、chmod和chown) 目录 显示系统进程状态文件权限设置(chmod)修改文件或目录所有者和所属组(chown) …...

Python 批量修改文件名
主要步骤 通过os.listdir查看该文件夹下所有的文件(包括文件夹)遍历所有文件,如果是文件夹则跳过,或指定跳过指定文件获取文件扩展名按照需求生成新的文件路径文件名进行重命名 代码示例 # -*- coding: utf-8 -*- import osdef…...

git的基本命令操作超详细解析教程
Git基础教学 1、初始化配置2、初始化仓库3、工作区域和文件状态4、添加和提交文件5、git reset 回退版本6、git diff查看差异7、删除文件git rm8、.gitignore9、本地文件提交到远程仓库10、分支基础 Git:一个开源的分布式版本控制系统,它可以在本地和远程…...

【代码】两阶段鲁棒优化/微电网经济调度入门到编程
内容包括 matlab-yalmipcplex微电网两阶段鲁棒经济调度(刘) matlab-yalmipcplex两阶段鲁棒微电网容量经济优化调度 两阶段鲁棒优化CCG列于约束生成和Benders代码,可扩展改编,复现自原外文论文 【赠送】虚拟储能单元电动汽车建…...

【图论】重庆大学图论与应用课程期末复习资料2-各章考点(填空证明部分)(私人复习资料)
图论各章考点 一、图与网络的基本概念二、树三、连通性四、路径算法五、匹配六、行遍性问题七、平面图 一、图与网络的基本概念 生成子图:生成子图 G ’ G’ G’中顶点个数V’必须和原图G中V的数量相同,而 E ’ ∈ E E’∈E E’∈E即可。顶点集导出子图…...

基于Intel® AI Analytics Toolkits的智能视频监控系统
【oneAPI DevSummit & OpenVINODevCon联合黑客松】 跳转链接:https://marketing.csdn.net/p/d2322260c8d99ae24795f727e70e4d3d 目录 1方案背景 2方案描述 3需求分析 4技术可行性分析 5详细设计5.1数据采集 5.2视频解码与帧提取 5.3人脸检测 5.4行为识别…...

深度学习中的注意力机制:原理、应用与实践
深度学习中的注意力机制:原理、应用与实践 摘要: 本文将深入探讨深度学习中的注意力机制,包括其原理、应用领域和实践方法。我们将通过详细的解析和代码示例,帮助读者更好地理解和应用注意力机制,从而提升深度学习模…...

将本地项目推送到github
欢迎大家到我的博客浏览。将本地项目推送到github | YinKais Blog 本地项目上传至 GitHub<!--more--> 1、进入项目根目录,初始化本地仓库 git init 2、创建密钥:创建 .ssh 文件夹,并进入 .ssh 文件夹 mkdir .ssh cd .ssh/ 3、生成…...

[读论文]meshGPT
概述 任务:无条件生成mesh (无颜色)数据集:shapenet v2方法:先trian一个auto encoder,用来获得code book;然后trian一个自回归的transformermesh表达:face序列。face按规定的顺序&a…...

反序列化漏洞详解(一)
目录 一、php面向对象 二、类 2.1 类的定义 2.2 类的修饰符介绍 三、序列化 3.1 序列化的作用 3.2 序列化之后的表达方式/格式 ① 简单序列化 ② 数组序列化 ③ 对象序列化 ④ 私有修饰符序列化 ⑤ 保护修饰符序列化 ⑥ 成员属性调用对象 序列化 四、反序列化 …...

键盘打字盲打练习系列之指法练习——2
一.欢迎来到我的酒馆 盲打,指法练习! 目录 一.欢迎来到我的酒馆二.开始练习 二.开始练习 前面一个章节简单地介绍了基准键位、字母键位和数字符号键位指法,在这个章节详细介绍指法。有了前面的章节的基础练习,相信大家对盲打也有了…...

小程序----使用图表显示数据--canvas
需求:在小程序上实现数据可视化 思路:本来想用的是echarts或者相关的可视化插件,但因为用的是vue3,大多数插件不支持,所以用了echarts,但最后打包的时候说包太大超过2M无法上传,百度了一下&…...

⭐ Unity 开发bug —— 打包后shader失效或者bug (我这里用Shader做两张图片的合并发现了问题)
1.这里我代码没啥问题~~~编辑器里也没毛病 void Start(){// 加载底图和上层图片string backgroundImagePath Application.streamingAssetsPath "/background.jpg";Texture2D backgroundTexture new Texture2D(2, 2);byte[] backgroundImageData System.IO.File.R…...

document
原贴连接 1.在整个文档范围内查询元素节点 功能API返回值根据id值查询document.getElementById(“id值”)一个具体的元素节根据标签名查询document.getElementsByTagName(“标签名”)元素节点数组根据name属性值查询document.getElementsByName(“name值”)元素节点数组根据类…...

NodeJS(二):npm包管理工具、yarn、npx、pnpm工具等
目录 (一)npm包管理工具 1.了解npm 2.npm的配置文件 常见的配置属性 scripts属性*** 依赖的版本管理 3.npm安装包的细节 4.package-lock文件 5.npm install原理** 6.npm的其他命令 (二) 其他包管理工具 1.yarn工具 基本指令 2.cnpm工具 3.npx工具 (1)执行本地…...

day3 移出链表中值为x的节点
ListNode* removeElements(ListNode* head, int val) { ListNode* dummyHead new ListNode(0); // 设置一个虚拟头结点 dummyHead->next head; // 将虚拟头结点指向head,这样方便后面做删除操作 ListNode* cur dummyHead; while (cur->next ! NULL…...

浅谈 Guava 中的 ImmutableMap.of 方法的坑
作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《EffectiveJava》独家解析》专栏作者。 热门文章推荐&…...

Symbol()和迭代器生成器
目录 1、Symbol() 2、迭代器生成器 执行流程 模拟生成器函数 for of 遍历迭代选择器 yield * Generator函数应用 1、Symbol() Symbol表示独一无二的值 const s1 Symbol(a)const s2 Symbol(a)console.log(s1 s2) // fa…...