智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.向量加权平均算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用向量加权平均算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.向量加权平均算法
向量加权平均算法原理请参考:https://blog.csdn.net/u011835903/article/details/123626532
向量加权平均算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
向量加权平均算法参数如下:
%% 设定向量加权平均优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明向量加权平均算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.向量加权平均算法4.实验参数设定…...

SpringBoot - Maven 打包合并一个胖 JAR 以及主项目 JAR 依赖 JAR 分离打包解决方案
问题描述 <plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><version>2.1.18.RELEASE</version><configuration><!--<classifier>exec</classifier>--…...
react 18 Hooks扩展函数式组件的状态管理
React函数式组件 特点 React函数式组件具有以下特点: 简洁:使用函数的方式定义组件,语法简单直观。无状态:函数式组件没有内部状态(state),只依赖于传入的props。可复用:函数式组…...

智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.浣熊算法4.实验参数设定5.算法结果6.参考文献7.MA…...
c++ qt QtWidgetsApplication 项目 使用外部ui
1 包含生成的UI头文件: 例如,如果你的Qt Designer的.ui文件名为test.ui,那么生成的头文件通常为ui_test.h。 #include "ui_test.h"2 实例化UI类:.h文件中实例化ui 在你的主要类的头文件中,你通常会声明一个U…...

使用React 18、Echarts和MUI实现温度计
关键词 React 18 Echarts和MUI 前言 在本文中,我们将结合使用React 18、Echarts和MUI(Material-UI)库,展示如何实现一个交互性的温度计。我们将使用Echarts绘制温度计的外观,并使用MUI创建一个漂亮的用户界面。 本文…...

使用代码生成工具快速开发应用-结合后端Web API提供接口和前端页面快速生成,实现通用的业务编码规则管理
1、通用的业务编码规则的管理功能 在前面随笔我们介绍了一个通用的业务编码规则的管理功能,通过代码生成工具Database2Sharp一步步的生成相关的后端和Winform、WPF的界面,进行了整合,通过利用代码生成工具Database2sharp生成节省了常规功能的…...

Android 13 - Media框架(26)- OMXNodeInstance(三)
上一节我们了解了OMXNodeInstance中的端口定义,这一节我们一起来学习ACodec、OMXNode、OMX 组件使用的 buffer 到底是怎么分配出来的,以及如何关联起来的。(我们只会去了解 graphic buffer的创建、input bytebuffer的创建、secure buffer的创…...

力扣题目学习笔记(OC + Swift)21. 合并两个有序链表
21. 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 链表解题经典三把斧: 哑巴节点栈快慢指针 此题比较容易想到的解法是迭代法,生成哑巴节点,然后迭代生成后续节点。…...

C# WPF上位机开发(windows pad上的应用)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 大部分同学可能都认为c# wpf只能用在pc端。其实这是一种误解。c# wpf固然暂时只能运行在windows平台上面,但是windows平台不仅仅是电脑…...
Word使用技巧【开题报告】
1、修改目录:选中目录,点击更新域。 2、更改或删除单个页面上的页眉或页脚 3、借助其他软件在Word导入参考文献 利用zetero导入文献:安装zetero 解决参考文献插入问题 在Word中插入文献操作步骤 英文文献出现“等”,如何解决 Zote…...

电子学会C/C++编程等级考试2022年06月(七级)真题解析
C/C++等级考试(1~8级)全部真题・点这里 第1题:有多少种二叉树 输入n(1<n<13),求n个结点的二叉树有多少种形态 时间限制:1000 内存限制:65536输入 整数n输出 答案 样例输入 3样例输出 5 答案: //参考答案 #include<bits/stdc++.h> using namespace std; …...

git中的smart checkout和force checkout
切换分支时出现了这个问题: 这是因为shiyan01分支修改了代码,但是没有commit, 所以在切换到test分支的时候弹出这个窗口 一、smart checkout(智能签出) 会把shiyan01分支的改动内容带到test分支。合并处理后的内容就变成了test分支的内容,而shiyan01分支的改动会被…...
vue3整合Element-Plus,极速上手。
条件分页查询: 需求分析: form表单 Button按钮 Table表格 Pagination分页 页面布局: 搜索表单: 如果表单封装的数据较多,建议绑定到一个对象中。 …...
学习Vue2.x
文章目录 一、使用Vue脚手架1.ref和props属性2.mixin混入3.组件化编码流程4.webStorage5.组件自定义事件6.全局事件总线7.消息订阅与发布 二、使用步骤1.引入库 一、使用Vue脚手架 1.ref和props属性 ref属性: (1)被用来给元素或子组件注册应…...
新手如何快速熟悉代码,写出东西(持续更新)
目录 第一章、最小编程任务的设想1.1)程序员入门会遇到的问题1.2)最小编程任务的设想1.3)编程逻辑1.4)具体需求 第二章、最小编程单元的练习2.1)代码/需求方面2.1.1)初级练习2.1.2)中级练习2.1.…...
11-网络安全框架及模型-软件安全能力成熟度模型(SSCMM)
目录 软件安全能力成熟度模型 1 背景概述 2 主要内容 3 成熟度等级定义 4 关键过程和实践 5 评估方法 6 改进建议 7 持续改进 8 主要价值 9 应用场景 10 优势和局限性 备注 软件安全能力成熟度模型 1 背景概述 SSCMM模型是软件安全能力成熟度模型,它描…...

Linux操作系统基础知识点
Linux是一种计算机操作系统,其内核由林纳斯本纳第克特托瓦兹(Linus Benedict Torvalds)于1991年首次发布。Linux操作系统通常与GNU套件一起使用,因此也被称为GNU/Linux。它是一种类UNIX的操作系统,设计为多用户、多任务…...

python 通过opencv及face_recognition识别人脸
效果: 使用Python的cv2库和face_recognition库来进行人脸检测和比对的 0是代表一样 认为是同一人。 代码: pip install opencv-python pip install face_recognition# 导入cv2库,用于图像处理 import cv2 # 导入face_recognition库&#…...
Android开发中常见的Hook技术有哪些?
Hook技术介绍 Hook技术是一种在软件开发中常见的技术,它允许开发者在特定的事件发生时插入自定义的代码逻辑。常见的应用场景包括在函数调用前后执行特定的操作,或者在特定的事件发生时触发自定义的处理逻辑。 在Android开发中,Hook通常是通…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...