当前位置: 首页 > news >正文

Modbus协议初探(C#实现)

由于作者水平有限,如有写得不对得地方请指正

趁着今天休息,就折腾一下Modbus协议,之前零零散散的看过几篇博客,听说搞上位机开发的要会这个协议,虽然我不是搞上位机开发的,但个人对这个比较感兴趣。按照我个人的理解是:Modbus协议其实是定义了一套规则,各个厂商遵循这个规则来实现,不管是使用那种编程语言来实现;用C#实现该协议的本质其实就是对字节数组的设值,然后通过串口把字节数组发送出去。网上看了几篇博文,发现一个很有趣的现象就是接收到的数据是十进制的字节数组,然后转成16进制的字符串再进行处理,感觉完全没有这个必要吧,直接通过10进制的数值处理岂不是更快。

本文通过仿真软件的方式进行演示:

虚拟串口:vspdconfig.exe

下位机仿真软件:Modbus Slave

虚拟仿真软件配置如下图:

新增虚拟串口:COM3和COM4,如下图:

                                                          图1 

下位机仿真软件的配置:

                                                                图2

                                                                    图3

 设置上图中的线圈值可以在对应的区域鼠标双击就可以设置了,1代表为on,0代表为off

本文就详细说明:读取线圈的输出状态 ,其它的功能类似

主站发送的报文格式:

                                                                    图4

地址:01                         

         表明是从站的地址,从上面的图3可以看到下位机从站的地址为十进制的1,所以这里为01

功能码:01                       

         线圈输出状态的功能码,是固定的

起始地址高位:00           

           从上面的图3可以看出,配置的从站的起始地址为十进制的9,小于256,所以起始地址的高位位0,即十六进制的00,如果从站配置的起始地址为十进制的257,则起始地址的高位为1,十六进制为01,起始地址 的低位为十进制的1,即十六进制的01 ,即257=256*1+1

起始地址地位:09         

         从上面的图3可以看出,配置的从站的起始地址为十进制的9,所以这里为十六进制的09,分析可以参考起起始地址高位

线圈数高位:00               

        从上面的图3可以看出,线圈数配置为十进制的10,小于256,可以这样写10=256*0+10,所以这里线圈数的高位为十进制的0,即十六进制的00

线圈数低位:0A               

         从上面的图3可以看出,线圈数配置为十进制的10,即十六进制0A

CRC:                               

        CRC校验位,网上都能抄到代码

从站应答的报文格式:

                                                图5

地址:01                         

        表明是从站的地址,从上面的图3可以看到下位机从站的地址为十进制的1,所以这里为01

功能码:01                     

         线圈输出状态的功能码,是固定的

字节计数:02                   

        十六进制数02转成10进制就是2,代表用两个字节就能标注所要读取的 线圈的状态,从前文描述中可以看到需要读取10个线圈的状态,用10个二进制位就可以表示了,一个字节8位,所以用两个字节表示还剩4位没用

线圈状态1-8:08

         代表第一个到第八个线圈的状态,08转成二进制表示为00001000

线圈状态9-10:00

          代表第9个到第10个线圈的状态,00转成二进制为00000000

下面进入编程部分:

1  新增.net framework的控制台程序,并新增类ModbusHelper,并编辑如下:

using System;
using System.Collections.Generic;
using System.IO.Ports;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace Demo2
{public class ModbusHelper{SerialPort serialPort = null;private byte ucCRCHi = 0xFF;private byte ucCRCLo = 0xFF;private byte[] bData = new byte[1024];//最大接受的1024个字节public ModbusHelper(){serialPort = new SerialPort();}/// <summary>/// 连接COM4口/// </summary>/// <returns></returns>public bool Connect(){serialPort.BaudRate = 9600; //波特率serialPort.PortName = "COM4"; //COM口名称serialPort.DataBits = 8;     //数据位serialPort.Parity = System.IO.Ports.Parity.None;serialPort.StopBits = System.IO.Ports.StopBits.One;serialPort.ReceivedBytesThreshold = 1;serialPort.DataReceived += SerialPort_DataReceived;//打开串口serialPort.Open();return true;}public void Send(){byte[] sendCommand = new byte[8];sendCommand[0] = 1;    //从站的地址sendCommand[1] =0x01;  //功能码 01:读取输出线圈sendCommand[2] = 0x00; //起始地址高位  也可以写成sendCommand[2]=0sendCommand[3] = 0x09; //起始地址低位  也可以写成sendCommand[3] =9sendCommand[4] = 0x00;sendCommand[5] =10;   //也可以写成0x0ACrc16(sendCommand, 6);sendCommand[6] = ucCRCLo;sendCommand[7] = ucCRCHi;serialPort.Write(sendCommand, 0, 8);}private void SerialPort_DataReceived(object sender, SerialDataReceivedEventArgs e){//存储接收的字符串string strReceive = string.Empty;if (serialPort != null){//读取接收到的字节长度int n = serialPort.BytesToRead;//定义字节存储器数组byte[] byteReceive = new byte[n];//接收的字节存入字节存储器数组serialPort.Read(byteReceive, 0, n);//把接收的的字节数组转成字符串strReceive = string.Join(",", byteReceive);Console.WriteLine("接收到的数据是: " + strReceive);}}#region  CRC校验private static readonly byte[] aucCRCHi = {0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40};private static readonly byte[] aucCRCLo = {0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC,0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,0x41, 0x81, 0x80, 0x40};private void Crc16(byte[] pucFrame, int usLen){int i = 0;ucCRCHi = 0xFF;ucCRCLo = 0xFF;UInt16 iIndex = 0x0000;while (usLen-- > 0){iIndex = (UInt16)(ucCRCLo ^ pucFrame[i++]);ucCRCLo = (byte)(ucCRCHi ^ aucCRCHi[iIndex]);ucCRCHi = aucCRCLo[iIndex];}}#endregion}
}

Send是发送报文的方法,用长度为8的字节数组存储报文数据,

            sendCommand[0] = 1;    //从站的地址
            sendCommand[1] =0x01;  //功能码 01:读取输出线圈状态码,写死的
            sendCommand[2] = 0x00; //起始地址高位  也可以写成sendCommand[2]=0
            sendCommand[3] = 0x09; //起始地址低位  也可以写成sendCommand[3] =9
            sendCommand[4] = 0x00;
            sendCommand[5] =10;   //也可以写成0x0A

sendCommand[2]和sendCommand[3]为设置要读取线圈的起始地址信息,两个字节足够表示了,最大值为2的64次方了

sendCommand[4]和sendCommand[5]为要读取的线圈数量,用两个字节表示足够了,最大值为2的64次方了

主程序代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace Demo2
{class Program{static void Main(string[] args){ModbusHelper modbusHelper = new ModbusHelper();modbusHelper.Connect();Console.WriteLine("开启成功");modbusHelper.Send();Console.ReadLine();}}
}

运行结果如下图:

接收到的数据的值的格式为十进制的

观察并分析:

相信聪明的你一定能看出所以然的,好了,本文到此结束。

相关文章:

Modbus协议初探(C#实现)

由于作者水平有限&#xff0c;如有写得不对得地方请指正 趁着今天休息&#xff0c;就折腾一下Modbus协议&#xff0c;之前零零散散的看过几篇博客&#xff0c;听说搞上位机开发的要会这个协议&#xff0c;虽然我不是搞上位机开发的&#xff0c;但个人对这个比较感兴趣。按照我个…...

【华为OD机试2023】静态扫描 C++ Java Python

【华为OD机试2023】静态扫描 C++ Java Python 前言 如果您在准备华为的面试,期间有想了解的可以私信我,我会尽可能帮您解答,也可以给您一些建议! 本文解法非最优解(即非性能最优),不能保证通过率。 Tips1:机试为ACM 模式 你的代码需要处理输入输出,input/cin接收输入、…...

函数栈帧的创建和销毁(详解)

函数栈帧的创建和销毁&#x1f996;函数栈帧是什么&#xff1f;&#x1f996;函数栈帧的创建和销毁解析&#x1f40b;栈是什么&#xff1f;&#x1f40b;认识相关寄存器和汇编指令&#x1f40b;解析函数栈帧的创建和销毁&#x1f433;预备知识&#x1f433;函数的调用堆栈&…...

【100个 Unity实用技能】 | 脚本无需挂载到游戏对象上也可执行的方法

Unity 小科普 老规矩&#xff0c;先介绍一下 Unity 的科普小知识&#xff1a; Unity是 实时3D互动内容创作和运营平台 。包括游戏开发、美术、建筑、汽车设计、影视在内的所有创作者&#xff0c;借助 Unity 将创意变成现实。Unity 平台提供一整套完善的软件解决方案&#xff…...

条件期望5

条件期望例题 随机图 从节点1开始, N为一个随机变量, 表示整个过程第一次出现"贪吃蛇"情形时, 所进行的步数.即Nk⇒Xk(1)∈{1,X(1),X2(1),...Xk−1(1)}其中1,X(1),X2(1),...Xk−1(1)各不相同N k \Rightarrow X^k(1) \in \{1,X(1), X^2(1),...X^{k-1}(1)\} \\ 其中1…...

RecyclerView ViewType二级

实现效果描述&#xff1a; 1、点击recyclerview中item&#xff0c;列表下方出现其他样式的item&#xff0c;作为子item&#xff0c;如下所示 所需要的java文件和xml文件有&#xff1a; 1、创建FoldAdapteradapter, 在FoldAdapter中&#xff0c;定义两种不同的类型&#xff…...

将对象或数组存在 dom元素的属性上,最后取不到完整数据,只取到 [{

目录 一、问题 二、问题及解决方法 三、总结 一、问题 1.我需要在dom元素里面添加了一个属性test存一个对象数组temp&#xff0c;以便我下一次找到这个dom元素时可以直接拿到属性里面的数据来渲染页面。 2.dom 属性上存 对象和数组&#xff0c;必须先JSON.stringify(arr),转…...

Flask源码篇:Flask路由规则与请求匹配过程(超详细,易懂)

目录1 启动时路由相关操作&#xff08;1&#xff09;分析app.route()&#xff08;2&#xff09;分析add_url_rule()&#xff08;3&#xff09;分析Rule类&#xff08;4&#xff09;分析Map类&#xff08;5&#xff09;分析MapAdapter类&#xff08;6&#xff09;分析 url_rule_…...

Jmeter接口测试教程之【参数化技巧总结】,总有一个是你不知道的

目录&#xff1a;导读 一、随机值 二、随机字符串 三、时间戳 四、唯一字符串UUID 说起接口测试&#xff0c;相信大家在工作中用的最多的还是Jmeter。 大家看这个目录就知道jmeter的应用有多广泛了&#xff1a;https://www.bilibili.com/video/BV1e44y1X78S/? JMeter是一个…...

缓存与数据库的双写一致性

背景 在高并发的业务场景下&#xff0c;系统的性能瓶颈往往是出现在数据库上&#xff0c;用户并发访问过大&#xff0c;压力都打到数据库上。所以一般都会用redis做缓存层&#xff0c;起到一个缓冲作用&#xff0c;让请求先访问到缓存层&#xff0c;而不是直接去访问数据库&am…...

力扣-213打家劫舍II(dp)

力扣-213打家劫舍II 1、题目 213. 打家劫舍 II 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 &#xff0c;这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#xff0c;相邻的房屋装有相互连通…...

关于【网格结构】岛屿类问题的通用解法DFS(深度遍历)遍历框架+回溯+剪枝总结

最近在刷力扣时遇见的问题&#xff0c;自己总结加上看了力扣大佬的知识总结写下本篇文章&#xff0c;我们所熟悉的 DFS&#xff08;深度优先搜索&#xff09;问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题&#xff0c;是在一种「网格」结构中进行的。岛屿问题…...

【LeetCode】982. 按位与为零的三元组

982. 按位与为零的三元组 题目描述 给你一个整数数组 nums &#xff0c;返回其中 按位与三元组 的数目。 按位与三元组 是由下标 (i, j, k) 组成的三元组&#xff0c;并满足下述全部条件&#xff1a; 0 < i < nums.length0 < j < nums.length0 < k < num…...

Linux内核源码进程原理分析

Linux内核源码进程原理分析一、Linux 内核架构图二、进程基础知识三、Linux 进程四要素四、task_struct 数据结构主要成员五、创建新进程分析六、剖析进程状态迁移七、写时复制技术一、Linux 内核架构图 二、进程基础知识 Linux 内核把进程称为任务(task)&#xff0c;进程的虚…...

电子技术——CMOS反相器

电子技术——CMOS反相器 在本节&#xff0c;我们深入学习CMOS反相器。 电路原理 下图是我们要研究的CMOS反相器的原理图&#xff1a; 下图展示了当输入 vIVDDv_I V_{DD}vI​VDD​ 时的 iD−vDSi_D-v_{DS}iD​−vDS​ 曲线&#xff1a; 我们把 QNQ_NQN​ 当做是驱动源&#x…...

gazebo仿真轨迹规划+跟踪(不在move_base框架下)

以Tianbot为例子&#xff0c;开源代码如下&#xff1a; https://github.com/tianbot/tianbot_mini GitHub - tianbot/abc_swarm: Ant Bee Cooperative Swarm, indicating air-ground cooperation. This repository is for Tianbot Mini and RoboMaster TT swarm kit. 1.在…...

C. Good Subarrays(前缀和)

C. Good Subarrays一、问题二、分析三、代码一、问题 二、分析 这道题目的意思就是给我们一个数组&#xff0c;然后我们从数组中选取一个连续的区间&#xff0c;这个区间满足条件&#xff1a;区间内的元素和等于区间的长度。 对于区间和问题我们先想到的是前缀和的算法。 那…...

关于Facebook Messenger CRM,这里有你想要知道的一切

关于Facebook Messenger CRM&#xff0c;这里有你想要知道的一切&#xff01;想把Facebook Messenger与你的CRM整合起来吗&#xff1f;这篇博文是为你准备的! 我们将介绍有关获得Facebook Messenger CRM整合的一切信息。然后&#xff0c;我们将解释为什么你需要像SaleSmartly&a…...

ChIP-seq 分析:数据与Peak 基因注释(10)

动动发财的小手&#xff0c;点个赞吧&#xff01; 1. 数据 今天&#xff0c;我们将继续回顾我们在上一次中研究的 Myc ChIPseq。这包括用于 MEL 和 Ch12 细胞系的 Myc ChIPseq。 可在此处[1]找到 MEL 细胞系中 Myc ChIPseq 的信息和文件可在此处[2]找到 Ch12 细胞系中 Myc ChIP…...

《C++ Primer Plus》第18章:探讨 C++ 新标准(8)

使用大括号括起的初始化列表语法重写下述代码。重写后的代码不应使用数组 ar&#xff1a; class Z200 { private:int j;char ch;double z; public:Z200(int jv, char chv, zv) : j(jv), ch(chv), z(zv) {} ... };double x 8.8; std::string s "What a bracing effect!&q…...

YOLO-V5 系列算法和代码解析(八)—— 模型移植

文章目录工程目标芯片参数查阅官方文档基本流程Python 版工具链安装RKNPU2的编译以及使用方法移植自己训练的模型工程目标 将自己训练的目标检测模型【YOLO-V5s】移植到瑞芯微【3566】芯片平台&#xff0c;使用NPU推理&#xff0c;最终得到正确的结果。整个过程涉及模型量化、…...

js实现复制拷贝的兼容方法

1. 定义复制拷贝的方法 在某个工具类方法中定义该方法&#xff0c;兼容不同浏览器处理 /*** description 拷贝的类方法*/ class CopyClass {// constructor() {}setRange(input) {return new Promise((resolve, reject) > {try {// 创建range对象const range document.c…...

学习 Python 之 Pygame 开发魂斗罗(八)

学习 Python 之 Pygame 开发魂斗罗&#xff08;八&#xff09;继续编写魂斗罗1. 创建敌人类2. 增加敌人移动和显示函数3. 敌人开火4. 修改主函数5. 产生敌人6. 使敌人移动继续编写魂斗罗 在上次的博客学习 Python 之 Pygame 开发魂斗罗&#xff08;七&#xff09;中&#xff0…...

Lesson11---分类问题

11.1 逻辑回归 11.1.1 广义线性回归 课程回顾 线性回归&#xff1a;将自变量和因变量之间的关系&#xff0c;用线性模型来表示&#xff1b;根据已知的样本数据&#xff0c;对未来的、或者未知的数据进行估计 11.1.2 逻辑回归 11.1.2.1 分类问题 分类问题&#xff1a;垃圾…...

Python基础学习12——异常

在Python中&#xff0c;会使用“异常”这个十分特殊的对象来管理程序执行期间发生的错误&#xff0c;即报错。本文将介绍一下python基础的处理异常的方法以及一些基本的异常类型。 异常处理方法 try-except代码块 当我们编写程序时&#xff0c;我们可以编写一个try-except代…...

[日常练习]练习17:链表头插法、尾插法练习

[日常练习]练习17&#xff1a;链表头插法、尾插法练习练习17描述输入输出输入示例1输出示例1输入示例2输出示例2代码演示&#xff1a;总结练习17 【日常练习】 链表头插法、尾插法练习 描述 输入3 4 5 6 7 9999一串整数&#xff0c;9999代表结束&#xff0c;通过头插法新建链…...

第十四届蓝桥杯模拟赛(第三期)试题与题解 C++

目录 一、填空题 &#xff08;一&#xff09;最小的十六进制(答案&#xff1a;2730) &#xff08;二&#xff09;Excel的列(答案&#xff1a;BYT) &#xff08;三&#xff09;相等日期(答案&#xff1a;70910) &#xff08;四&#xff09;多少种取法(答案&#xff1a;189)…...

关于 “宏“

起源 宏 Macro"这个词源于希腊语 “makros”&#xff0c;意为“大的&#xff0c;长的” 延伸使用 随后用于计算机领域是&#xff0c;在汇编语言时用于描述一大堆的汇编指令。 只要用宏指令&#xff0c;就是直接用的一大堆的汇编指令&#xff08;有点函数的味道&#xf…...

1.2 CSS标签选择器,类选择器

CSS选择器&#xff1a; 根据不同的需求选出不同的标签&#xff0c;进行美化装饰 1. 标签选择器 标签选择器(元素选择器)&#xff1a;用 HTML标签名作为选择器&#xff0c;按标签名称进行分类&#xff0c;为页面某一类标签指定统一的CSS样式 作用: 可以把某一类标签全部选中&…...

【Linux】进程等待 | 详解 wait/waitpid 的 status 参数

&#x1f923; 爆笑教程 &#x1f449; 《看表情包学Linux》&#x1f448; 猛戳订阅 &#x1f525; &#x1f4ad; 写在前面&#xff1a;在上一章中我们讲解了进程创建与进程终止&#xff0c;本章我们开始讲解进程等待。进程等待这部分知识相较于前面还是较为复杂的&#xff0…...