当前位置: 首页 > news >正文

蓝桥杯之即约分数

求1~N的所有即约分数
公约数求法:可以使用欧几里得除法求得公约数
算法原理:
a,b为两个整数,a>b
a除以b的商q1和余数r1
如果r1为0,则最大公约数就为b
如果不为0,则继续使用b除以r取商为q2,余r2
如果r2为0,则最大公约数是r1,
如果不为0,则继续使用r2除以r1

递归思想,始终是上一次的除数除以上一次的余数,然后判断是否本次余数为0否,为0,则返回除数

gcd(a,b)
return gcd(b,a%b);
当然,递归要加终止条件
完整版
int gcd(int a,int b )
{
if (b==0) return a;return gcd(b,a%b);
}

最终代码:

#include<bits/stdc++.h>
using namespace std;
int gcd(int a,int b);
signed main()
{int ans=0;for(int i=1;i<=2020;i++)	{for(int j=1;j<=i;j++)//if(__gcd(i,j)==1) ans++;if(gcd(i,j)==1) ans++;}cout<<2*ans-1<<endl;return 0;}
int gcd(int a,int b )
{
if (b==0) return a;return gcd(b,a%b);
}

这里,最小公倍数就也很好计算了,
两个数相乘,除以最大公约数就是最小公倍数

改进算法

求即约分数,即要求分子与分母互质,互为质数。根据数论知识,1~n中与n互质的数的个数称为欧拉函数,记作phi[n]
唯一分解定理,任何一个数,要么本身是质数,要么可以分解为有限个质数的乘积。
根据欧拉公式和唯一分解定理,可得算法如下:

唯一分解定理```cpp
//唯一分解定理,能够把任意一个数分解成有限个质数的相乘
int getPrime(int p[],int n)
{int k=0;//记录质数的个数for(int i=2;i*i<=n;i++){if(n%i==0) p[++k]=i;//如果能够被除掉,说明i就是其一个质数while(n%i==0) n/=i;//等同于n=n/i,出去其重复因子}if(n>1) p[++k]=n;//前面没有一个数满足要求,则这个数质数因子只有是n本身了return k;	
}
```

Euler函数


```cpp
//求解欧拉函数
int getEuler(int n)
{int phi=n;int k=getPrime(P,n);for(int i=1;i<=k;i++){phi=phi-phi/P[i];}return phi;
}
```

全部代码如下:

#include<bits/stdc++.h>
using namespace std;
int P[2020]={0};
//唯一分解定理,能够把任意一个数分解成有限个质数的相乘
int getPrime(int p[],int n)
{int k=0;//记录质数的个数for(int i=2;i*i<=n;i++){if(n%i==0) p[++k]=i;//如果能够被除掉,说明i就是其一个质数while(n%i==0) n/=i;//等同于n=n/i,出去其重复因子}if(n>1) p[++k]=n;//前面没有一个数满足要求,则这个数质数因子只有是n本身了return k;	
}
//求解欧拉函数
int getEuler(int n)
{int phi=n;int k=getPrime(P,n);for(int i=1;i<=k;i++){phi=phi-phi/P[i];}return phi;
}int main()
{int ans=0;int ans1=0;ans=getPrime(P,2020);	for(int i=1;i<=2020;i++)ans1+=getEuler(i);cout<<2*ans1-1<<endl;return 0;
}

在这里插入图片描述

相关文章:

蓝桥杯之即约分数

求1~N的所有即约分数 公约数求法&#xff1a;可以使用欧几里得除法求得公约数 算法原理&#xff1a; a,b为两个整数&#xff0c;a>b a除以b的商q1和余数r1 如果r1为0&#xff0c;则最大公约数就为b 如果不为0&#xff0c;则继续使用b除以r取商为q2,余r2 如果r2为0&#xff0…...

Pointnet++改进优化器系列:全网首发Sophia优化器 |即插即用,实现有效涨点

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入Sophia优化器,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一 2.2 步骤二 2.3...

1.27回溯(中等)

1.全排列 全排列 II 1.给定一个不含重复数字的数组 nums &#xff0c;返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 2.给定一个可包含重复数字的序列 nums &#xff0c;按任意顺序 返回所有不重复的全排列。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3…...

sql管理工具archery简介

在平时的工作过程中&#xff0c;我们肯定会遇到使用sql平台的场景&#xff0c;业内也有很多工具&#xff0c;类似阿里云的dms&#xff0c;但是这个是和云厂商绑定的&#xff0c;我们可能一般没有用到阿里云组件就比较困难了&#xff0c;那还有什么选项了&#xff0c;经过调研&a…...

DEM高程地形瓦片数据Cesium使用教程

一、简介 从开始写文章到现在&#xff0c;陆续发布了全球90m、30m(包括哥白尼及ALOS)、12.5m全球级瓦片数据&#xff0c;以及中国12.5、日本10m、新西兰8m、等国家级瓦片数据&#xff0c;同时也发布了台湾20m、中国34省区12.5m等地区级瓦片数据。在数据发布的文章中对数据如何…...

3个精美的wordpress律师网站模板

暗红色WordPress律师事务所网站模板 演示 https://www.zhanyes.com/qiye/23.html 暗橙色WordPress律师网站模板 演示 https://www.zhanyes.com/qiye/18.html 红色WordPress律所网站模板 演示 https://www.zhanyes.com/qiye/22.html...

在windows环境下安装hadoop

Hadoop是一个分布式系统基础架构。用户可以在不了解分布式底层细节的情况下&#xff0c;开发分布式程序。但这个架构是基于java语言开发的&#xff0c;所以要先进行jdk的安装&#xff0c;如果电脑已经配置过jdk或者是曾经运行成功过java文件&#xff0c;那就可以跳过第一步。 …...

大数据分析组件Hive-集合数据结构

Hive的数据结构 前言一、array数组类型二、map键值对集合类型三、struct结构体类型 前言 Hive是一个基于Hadoop的数据仓库基础设施&#xff0c;用于处理大规模分布式数据集。它提供了一个类似于SQL的查询语言&#xff08;称为HiveQL&#xff09;&#xff0c;允许用户以类似于关…...

单核QPS近6000S,陌陌基于OceanBase的持久化缓存探索与实践

挚文集团于 2011 年 8 月推出了陌陌&#xff0c;这款立足地理位置服务的开放式移动视频社交应用在中国社交平台领域内独树一帜。陌陌和探探作为陌生人社交领域的主流应用&#xff0c;涵盖了多种核心业务模块&#xff0c;包括直播服务、附近动态功能、即时通讯&#xff08;IM&am…...

关于css 的基础试题

CSS是什么的缩写&#xff1f; A. Creative Style SheetsB. Cascading Style SheetsC. Computer Style SheetsD. Colorful Style Sheets 在HTML中&#xff0c;通过什么标签引入CSS样式&#xff1f; A. <script>B. <style>C. <link>D. <css> 以下哪个选项…...

Keil-C语言小总结

1、 &取地址符&#xff0c;*取地址内容 int *ptr;//声明指针 2、ptr &c; // 将c的地址赋值给指针变量ptr 3、可选参数函数 4、C宏定义 5、 memset&#xff1a;最快的数据清零函数 void *memset(void *s, int ch, size_t n); 分别是 字符串 要值的数据&#xff08;0…...

react的withRouter高阶组件:

withRouter的作用就是, 如果我们某个东西不是一个Router, 但是我们要依靠它去跳转一个页面, 比如点击页面的logo, 返回首页, 这时候就可以使用withRouter来做. 在 React Router 中&#xff0c;withRouter 是一个函数&#xff0c;用于与路由相关的组件。它接受一个组件作为参数&…...

小程序 样式 WXSS

文章目录 样式 WXSS尺⼨单位样式导⼊选择器⼩程序中使⽤less 样式 WXSS WXSS( WeiXin Style Sheets )是⼀套样式语⾔&#xff0c;⽤于描述 WXML 的组件样式。 与 CSS 相⽐&#xff0c;WXSS 扩展的特性有&#xff1a; 响应式⻓度单位 rpx样式导⼊ 尺⼨单位 rpx &#xff08;…...

LLM之RAG实战(二十一)| 使用LlamaIndex的Text2SQL和RAG的功能分析产品评论

亚马逊和沃尔玛等电子商务平台上每天都有大量的产品评论&#xff0c;这些评论是反映消费者对产品情绪的关键接触点。但是&#xff0c;企业如何从庞大的数据库获得有意义的见解&#xff1f; 我们可以使用LlamaIndex将SQL与RAG&#xff08;Retrieval Augmented Generation&#x…...

Scikit-learn (sklearn)速通 -【莫凡Python学习笔记】

视频教程链接&#xff1a;【莫烦Python】Scikit-learn (sklearn) 优雅地学会机器学习 视频教程代码 scikit-learn官网 莫烦官网学习链接 本人matplotlib、numpy、pandas笔记 1 为什么学习 Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sk…...

支持向量机(SVM)详解

支持向量机&#xff08;support vector machines&#xff0c;SVM&#xff09;是一种二分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器&#xff0c;间隔最大使它有别于感知机。 1、线性可分支持向量机与硬间隔最大化 1.1、线性可分支持向量机 考虑一个二分…...

huggingface学习|云服务器部署Grounded-Segment-Anything:bug总会一个一个一个一个又一个的解决的

文章目录 一、环境部署&#xff08;一&#xff09;模型下载&#xff08;二&#xff09;环境配置&#xff08;三&#xff09;库的安装 二、运行&#xff08;一&#xff09; 运行grounding_dino_demo.py文件&#xff08;二&#xff09;运行grounded_sam_demo.py文件&#xff08;三…...

【最佳实践】Go 组合模式对业务解耦

在 Go 语言中&#xff0c;组合模式&#xff08;Composition&#xff09;是通过嵌入结构体&#xff08;embedding structs&#xff09;来实现的。它允许我们构建复杂的对象&#xff0c;通过将简单对象组合成树形结构来表示整个部分的层次结构。在 Go 中&#xff0c;这种模式不仅…...

arm 汇编调用C

arm64 汇编调用C函数 main.s .section .text .globl main main:stp x29, x30, [sp, -16]! //store fp x29 lr x30mov x0, #0mov x1, #1bl addmov x1, x0 // x0 return ldp x29, x30, [sp], 16 //restore fp lrretadd.c #include <stdio.h> int add(int a, int…...

Vue3+Vite使用Puppeteer进行SEO优化(SSR+Meta)

1. 背景 【笑小枫】https://www.xiaoxiaofeng.com上线啦 资源持续整合中&#xff0c;程序员必备网站&#xff0c;快点前往围观吧~ 我的个人博客【笑小枫】又一次版本大升级&#xff0c;虽然知道没有多少访问量&#xff0c;但我还是整天没事瞎折腾。因为一些功能在Halo上不太好实…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...