当前位置: 首页 > news >正文

Python的并发编程

我们将一个正在运行的程序称为进程。每个进程都有它自己的系统状态,包含内存状态、打开文件列表、追踪指令执行情况的程序指针以及一个保存局部变量的调用栈。通常情况下,一个进程依照一个单序列控制流顺序执行,这个控制流被称为该进程的主线程。在任何给定的时刻,一个程序只做一件事情。

一个程序可以通过Python库函数中的os或subprocess模块创建新进程(例如os.fork()或是subprocess.Popen())。然而,这些被称为子进程的进程却是独立运行的,它们有各自独立的系统状态以及主线程。因为进程之间是相互独立的,因此它们同原有的进程并发执行。这是指原进程可以在创建子进程后去执行其它工作。

虽然进程之间是相互独立的,但是它们能够通过名为进程间通信(IPC)的机制进行相互通信。一个典型的模式是基于消息传递,可以将其简单地理解为一个纯字节的缓冲区,而send()或recv()操作原语可以通过诸如管道(pipe)或是网络套接字(network socket)等I/O通道传输或接收消息。还有一些IPC模式可以通过内存映射(memory-mapped)机制完成(例如mmap模块),通过内存映射,进程可以在内存中创建共享区域,而对这些区域的修改对所有的进程可见。

多进程能够被用于需要同时执行多个任务的场景,由不同的进程负责任务的不同部分。然而,另一种将工作细分到任务的方法是使用线程。同进程类似,线程也有其自己的控制流以及执行栈,但线程在创建它的进程之内运行,分享其父进程的所有数据和系统资源。当应用需要完成并发任务的时候线程是很有用的,但是潜在的问题是任务间必须分享大量的系统状态。

当使用多进程或多线程时,操作系统负责调度。这是通过给每个进程(或线程)一个很小的时间片并且在所有活动任务之间快速循环切换来实现的,这个过程将CPU时间分割为小片段分给各个任务。例如,如果你的系统中有10个活跃的进程正在执行,操作系统将会适当的将十分之一的CPU时间分配给每个进程并且循环地在十个进程之间切换。当系统不止有一个CPU核时,操作系统能够将进程调度到不同的CPU核上,保持系统负载平均以实现并行执行。

利用并发执行机制写的程序需要考虑一些复杂的问题。复杂性的主要来源是关于同步和共享数据的问题。通常情况下,多个任务同时试图更新同一个数据结构会造成脏数据和程序状态不一致的问题(正式的说法是资源竞争的问题)。为了解决这个问题,需要使用互斥锁或是其他相似的同步原语来标识并保护程序中的关键部分。举个例子,如果多个不同的线程正在试图同时向同一个文件写入数据,那么你需要一个互斥锁使这些写操作依次执行,当一个线程在写入时,其他线程必须等待直到当前线程释放这个资源。

Python中的并发编程

Python长久以来一直支持不同方式的并发编程,包括线程、子进程以及其他利用生成器(generator function)的并发实现。

Python在大部分系统上同时支持消息传递和基于线程的并发编程机制。虽然大部分程序员对线程接口更为熟悉,但是Python的线程机制却有着诸多的限制。Python使用了内部全局解释器锁(GIL)来保证线程安全,GIL同时只允许一个线程执行。这使得Python程序就算在多核系统上也只能在单个处理器上运行。Python界关于GIL的争论尽管很多,但在可预见的未来却没有将其移除的可能。

Python提供了一些很精巧的工具用于管理基于线程和进程的并发操作。即使是简单地程序也能够使用这些工具使得任务并发进行从而加快运行速度。subprocess模块为子进程的创建和通信提供了API。这特别适合运行与文本相关的程序,因为这些API支持通过新进程的标准输入输出通道传送数据。signal模块将UNIX系统的信号量机制暴露给用户,用以在进程之间传递事件信息。信号是异步处理的,通常有信号到来时会中断程序当前的工作。信号机制能够实现粗粒度的消息传递系统,但是有其他更可靠的进程内通讯技术能够传递更复杂的消息。threading模块为并发操作提供了一系列高级的,面向对象的API。Thread对象们在一个进程内并发地运行,分享内存资源。使用线程能够更好地扩展I/O密集型的任务。multiprocessing模块同threading模块类似,不过它提供了对于进程的操作。每个进程类是真实的操作系统进程,并且没有共享内存资源,但multiprocessing模块提供了进程间共享数据以及传递消息的机制。通常情况下,将基于线程的程序改为基于进程的很简单,只需要修改一些import声明即可。

Threading模块示例

以threading模块为例,思考这样一个简单的问题:如何使用分段并行的方式完成一个大数的累加。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

import threading

class SummingThread(threading.Thread):

    def __init__(self, low, high):

        super(SummingThread, self).__init__()

        self.low = low

        self.high = high

        self.total = 0

    def run(self):

        for i in range(self.low, self.high):

            self.total += i

thread1 = SummingThread(0, 500000)

thread2 = SummingThread(500000, 1000000)

thread1.start() # This actually causes the thread to run

thread2.start()

thread1.join()  # This waits until the thread has completed

thread2.join()

# At this point, both threads have completed

result = thread1.total + thread2.total

print(result)

自定义Threading类库

我写了一个易于使用threads的小型Python类库,包含了一些有用的类和函数。

关键参数:

* do_threaded_work – 该函数将一系列给定的任务分配给对应的处理函数(分配顺序不确定)
* ThreadedWorker – 该类创建一个线程,它将从一个同步的工作队列中拉取工作任务并将处理结果写入同步结果队列
* start_logging_with_thread_info – 将线程id写入所有日志消息。(依赖日志环境)
* stop_logging_with_thread_info – 用于将线程id从所有的日志消息中移除。(依赖日志环境)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

import threading

import logging

def do_threaded_work(work_items, work_func, num_threads=None, per_sync_timeout=1, preserve_result_ordering=True):

    """ Executes work_func on each work_item. Note: Execution order is not preserved, but output ordering is (optionally).

        Parameters:

        - num_threads               Default: len(work_items)  --- Number of threads to use process items in work_items.

        - per_sync_timeout          Default: 1                --- Each synchronized operation can optionally timeout.

        - preserve_result_ordering  Default: True             --- Reorders result_item to match original work_items ordering.

        Return:

        --- list of results from applying work_func to each work_item. Order is optionally preserved.

        Example:

        def process_url(url):

            # TODO: Do some work with the url

            return url

        urls_to_process = ["http://url1.com", "http://url2.com", "http://site1.com", "http://site2.com"]

        # process urls in parallel

        result_items = do_threaded_work(urls_to_process, process_url)

        # print(results)

        print(repr(result_items))

    """

    global wrapped_work_func

    if not num_threads:

        num_threads = len(work_items)

    work_queue = Queue.Queue()

    result_queue = Queue.Queue()

    index = 0

    for work_item in work_items:

        if preserve_result_ordering:

            work_queue.put((index, work_item))

        else:

            work_queue.put(work_item)

        index += 1

    if preserve_result_ordering:

        wrapped_work_func = lambda work_item: (work_item[0], work_func(work_item[1]))

    start_logging_with_thread_info()

    #spawn a pool of threads, and pass them queue instance

    for _ in range(num_threads):

        if preserve_result_ordering:

            t = ThreadedWorker(work_queue, result_queue, work_func=wrapped_work_func, queue_timeout=per_sync_timeout)

        else:

            t = ThreadedWorker(work_queue, result_queue, work_func=work_func, queue_timeout=per_sync_timeout)

        t.setDaemon(True)

        t.start()

    work_queue.join()

    stop_logging_with_thread_info()

    logging.info('work_queue joined')

    result_items = []

    while not result_queue.empty():

        result = result_queue.get(timeout=per_sync_timeout)

        logging.info('found result[:500]: ' + repr(result)[:500])

        if result:

            result_items.append(result)

    if preserve_result_ordering:

        result_items = [work_item for index, work_item in result_items]

    return result_items

class ThreadedWorker(threading.Thread):

    """ Generic Threaded Worker

        Input to work_func: item from work_queue

    Example usage:

    import Queue

    urls_to_process = ["http://url1.com", "http://url2.com", "http://site1.com", "http://site2.com"]

    work_queue = Queue.Queue()

    result_queue = Queue.Queue()

    def process_url(url):

        # TODO: Do some work with the url

        return url

    def main():

        # spawn a pool of threads, and pass them queue instance

        for i in range(3):

            t = ThreadedWorker(work_queue, result_queue, work_func=process_url)

            t.setDaemon(True)

            t.start()

        # populate queue with data  

        for url in urls_to_process:

            work_queue.put(url)

        # wait on the queue until everything has been processed    

        work_queue.join()

        # print results

        print repr(result_queue)

    main()

    """

    def __init__(self, work_queue, result_queue, work_func, stop_when_work_queue_empty=True, queue_timeout=1):

        threading.Thread.__init__(self)

        self.work_queue = work_queue

        self.result_queue = result_queue

        self.work_func = work_func

        self.stop_when_work_queue_empty = stop_when_work_queue_empty

        self.queue_timeout = queue_timeout

    def should_continue_running(self):

        if self.stop_when_work_queue_empty:

            return not self.work_queue.empty()

        else:

            return True

    def run(self):

        while self.should_continue_running():

            try:

                # grabs item from work_queue

                work_item = self.work_queue.get(timeout=self.queue_timeout)

                # works on item

                work_result = self.work_func(work_item)

                #place work_result into result_queue

                self.result_queue.put(work_result, timeout=self.queue_timeout)

            except Queue.Empty:

                logging.warning('ThreadedWorker Queue was empty or Queue.get() timed out')

            except Queue.Full:

                logging.warning('ThreadedWorker Queue was full or Queue.put() timed out')

            except:

                logging.exception('Error in ThreadedWorker')

            finally:

                #signals to work_queue that item is done

                self.work_queue.task_done()

def start_logging_with_thread_info():

    try:

        formatter = logging.Formatter('[thread %(thread)-3s] %(message)s')

        logging.getLogger().handlers[0].setFormatter(formatter)

    except:

        logging.exception('Failed to start logging with thread info')

def stop_logging_with_thread_info():

    try:

        formatter = logging.Formatter('%(message)s')

        logging.getLogger().handlers[0].setFormatter(formatter)

    except:

        logging.exception('Failed to stop logging with thread info')

使用示例

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

from test import ThreadedWorker

from queue import Queue

urls_to_process = ["http://facebook.com", "http://pypix.com"]

work_queue = Queue()

result_queue = Queue()

def process_url(url):

    # TODO: Do some work with the url

    return url

def main():

    # spawn a pool of threads, and pass them queue instance

    for i in range(5):

        t = ThreadedWorker(work_queue, result_queue, work_func=process_url)

        t.setDaemon(True)

        t.start()

    # populate queue with data  

    for url in urls_to_process:

        work_queue.put(url)

    # wait on the queue until everything has been processed    

    work_queue.join()

    # print results

    print(repr(result_queue))

main()

相关文章:

Python的并发编程

我们将一个正在运行的程序称为进程。每个进程都有它自己的系统状态,包含内存状态、打开文件列表、追踪指令执行情况的程序指针以及一个保存局部变量的调用栈。通常情况下,一个进程依照一个单序列控制流顺序执行,这个控制流被称为该进程的主线…...

【Linux】基本系统维护命令

😊😊作者简介😊😊 : 大家好,我是南瓜籽,一个在校大二学生,我将会持续分享C/C相关知识。 🎉🎉个人主页🎉🎉 : 南瓜籽的主页…...

高数:数列的收敛

数列特点无限个数特定顺序数列和集合区别集合可以乱序,数列不行集合出现重复元素依然相同,数列出现新的重复元素就不相等[1,2,3,4][1,2,3,3,4]对集合来说相等&#xff0c…...

不平凡的一天——

作者:指针不指南吗 专栏:个人日常记录 🐾或许会很慢,但是不可以停下来🐾 文章目录1.自我介绍2.上学期3.不凡的一天4.新学期写个博客,简单记录一下,新学期加油!!&#xff…...

【Java基础】Map遍历的5种方式

目录 创建一个集合 方式一:Iterator 迭代器遍历 map.entrySet().iterator(); map.keySet().iterator(); 方式二:For Each方式遍历 map.forEach(BiConsumer action) 方式三:获取Collection集合 map.values().forEach() 方式四&#x…...

第十四届蓝桥杯三月真题刷题训练——第 2 天

目录 题目1:奇数倍数 代码: 题目2:求值 代码: 题目3:求和 代码: 题目4:数位排序 代码: 题目1:奇数倍数 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即…...

自然语言处理历史最全预训练模型(部署)汇集分享

什么是预训练模型?预练模型是其他人为解决类似问题而创建的且已经训练好的模型。代替从头开始建立模型来解决类似的问题,我们可以使用在其他问题上训练过的模型作为起点。预训练的模型在相似的应用程序中可能不是100%准确的。本文整理了自然语…...

csdn写文章自定义表格怎么做

前言 CSDN写文章时,经常会用到表格,不同于Word文档中直接插入表格(自定义几行几列),使用CSDN自带的md文本编辑器时,很难快速插入想要的表格样式,追究原因,也是因为md的语法问题&…...

Pytorch处理数据与训练网络问题汇总(协同训练)

基础语法 模型训练 【Swin-Unet】官方代码预训练权重加载函数load_from() 实际上由于SwinUnet是一个encoder-decoder对称的结构,因此加载权重时,作者并没有像通常那样仅仅加载encoder部分而不加载decoder部分,而是同时将encoder的权重对称地…...

机器学习:基于神经网络对用户评论情感分析预测

机器学习:基于神经网络对用户评论情感分析预测 作者:AOAIYI 作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞&#x1f4…...

Vue3之组件间传值避坑指南

组件间传值的两个坑 我们都知道父组件可以把值传递到自组件中,但是有时候子组件需要修改这个父组件传递过来的这个值,我们可以想象下能修改成功吗?这是坑之一。我们在组件间传值的时候,都是一个属性名对应一个值,接收…...

02-问题思考维度:抓住核心用户、场景化分析、需求收集与辨别、用户故事

文章目录2.1 抓住核心用户2.1.1 为什么要抓住核心用户2.1.2 核心用户的特征根据不同维度,描述核心用户2.1.3 如何抓住核心用户2.2 场景化分析2.2.1 场景五要素2.2.2 场景化分析方法2.2.3 场景化分析方法的应用2.3 需求收集与辨别2.3.1 需求的定义及层次2.3.2 需求收…...

C 语言编程 — GCC Attribute 语法扩展

目录 文章目录目录Attribute 属性扩展机制__attribute__((packed))__attribute__((aligned(n)))__attribute__((noreturn))__attribute__((unused))Attribute 属性扩展机制 GCC 的特点之一就是 Attribute 语法扩展机制,通过使用 __attribute__ 关键字可以设置以下对…...

LeetCode 热题 C++ 399. 除法求值 406. 根据身高重建队列

LeetCode 399 给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。 另有一些以数组 queries 表示的问题,其…...

提升Mac使用性能的5大方法,CleanMyMacX 2023非常的好用哦~

近些年伴随着苹果生态的蓬勃发展,越来越多的用户开始尝试接触Mac电脑。然而很多人上手Mac后会发现,它的使用逻辑与Windows存在很多不同,而且随着使用时间的增加,一些奇奇怪怪的文件也会占据有限的磁盘空间,进而影响使用…...

一步一步学会给Fritzing添加元器件-丰富你的器件库

文章目录1、获取元器件文件2、单个添加元器件3、批量加入(1)、通过别人发布的bin文件加载(2)、终极大招(拖)4、制作自己器件文章出处: https://blog.csdn.net/haigear/article/details/12931545…...

STM32 10个工程篇:1.IAP远程升级(一)

清晨一大早起来开始撰写STM32 10个例程篇的第一章即串口IAP远程升级,虽然网络上有很多免费和付费的STM32教程,但是仍然不断地说服自己沉住气、静下心写一份独一无二的,这份独一无二中也凝聚了一名MCU工程师5年间不断地项目迭代积累&#xff0…...

高通Android 13默认切换免提功能

1、测试部反馈 由于平板本身没有听筒功能 因此考虑工厂直接切换到免提功能 2、修改路径 frameworks/av/services/audiopolicy/enginedefault/src/Engine.cpp 3、编译源码ok 拨打紧急号码 可以正常切换到免提功能 其他mtk平台可能不一样 具体以项目实际为准 相关链接 构建…...

MySQL入门

Mysql入门SQL语句SQL通用语法SQL语句的分类DDL-数据库操作DDL-数据表操作DML-添加数据DML-修改、删除数据DQL-语法DQL-语句练习DCL-语法SQL语句 SQL通用语法 1、SQL语句可以单行或多行书写,以分号结尾。 2、SQL语句可以使用空格/缩进来增强语句的可读性。 3、MySQ…...

实验一 Python编程基础

目录 一、实验目标 二、实验内容 1.绘制如下图形 ,一个正方形,内有三个红点,中间红点在正方形中心。 2.使用turtle库绘制如下图形: 3.绘制奥运五环图 4.回文问题 5.身份证性别判别 6.数据压缩 7.验证哥德巴赫猜想 8.使…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

无法与IP建立连接,未能下载VSCode服务器

如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...