当前位置: 首页 > news >正文

Unity设备分级策略

Unity设备分级策略


前言

之前自己做的设备分级策略,在此做一个简单的记录和思路分享。希望能给大家带来帮助。

分级策略

  1. 根据拟定的评分标准,预生成部分已知机型的分级信息,且保存在包内;
  2. 如果设备没有被评级过,则优先从预生成分级信息里找自己的机型;
  3. 如果没有预生成信息,则通过设备各个硬件数据权重来进行评分;
  4. 如果获取不到需要的硬件数据,则进行跑分;
  5. 根据最终的分数来判断设备档位,且进行对应的效果降级。

跑分逻辑

跑分脚本,在短时间内(10帧下,每帧渲染后的10ms内)尽可能多的绘制模型。通过绘制的个数来打一个分数,从而判断机型等级。

在这里插入图片描述
需要注意的是:跑分脚本必须要在闲时运行,且限制时间、CPU占用率,不能影响到正常的游戏体验。

有人可能会问,为什么是绘制多少个模型,而不是固定模型数量去判断时间了?

原因是出于以下几点考虑:

  1. 考虑到如果出现跑分流程,那么就是在启动游戏的阶段,把时间作为可控因素对玩家的风险更小;
  2. 限定时间不限定个数可以更好地体现出手机的能力,如果把每一帧看作一次机会的话,相当于一台手机有很多次机会进行测试,取最终的个数总和作为分数,更加具有说服力;
  3. 如果拿时间做评定标准一是跨度太小不好评定,二是不稳定因素较高,可能不准确。

分级标准

如何评定的分级标准呢?
一是从经验方面,二是从多台测试机数据反馈。

评分标准并不是定死了就不改,而是需要根据线上玩家实际情况不断迭代,最好能做到自动动态迭代。不同类型的游戏,评分标准也可能有不同。

评分等级及对应效果降级策略

分数0-400400-700700-1000
等级低端机中端机高端机
分辨率50%75%100%
DPI50%75%100%
最大帧率30FPS45FPS60FPS
是否使用低清资源

Android设备分数标准

内存大小(权重0.7)1024-20482048-30723072-40964096-61446144-81928192+
分数1003005007008001000
CPU核数(权重0.1)2-44-66-88-1010+
分数1003006008001000
CPU主频(权重0.1)1000-15001500-18001800-20002000-25002500+
分数2003005008001000
显存大小(权重0.1)512-10241024-20482048-30723072-40964096+
分数1003006008001000

iOS设备分数标准

苹果设备号

内存大小(权重1.0)iPhone7.xxxiPhone8.xxxiPhone9.xxx
分数300600800
内存大小(权重1.0)iPad5.xxxiPad6.xxxiPad7.xxx
分数300600800

跑分标准

模型绘制个数(权重1.0)0-40004000-1000010000+
分数300600800

未来可优化空间

  1. 玩家可以主动切换高中低等级;
  2. 除了图集之外的资源也使用低清包;
  3. 跑分功能及标准更加细化;
  4. 设备评级标准更加合理,动态适配调整;
  5. 打包时间尽可能的缩短;
  6. 自动动态最大帧率调整(参考阴阳师);
  7. 资源卸载逻辑分级。

相关文章:

Unity设备分级策略

Unity设备分级策略 前言 之前自己做的设备分级策略,在此做一个简单的记录和思路分享。希望能给大家带来帮助。 分级策略 根据拟定的评分标准,预生成部分已知机型的分级信息,且保存在包内;如果设备没有被评级过,则优…...

自己在开发AI应用的过程总结的 Prompt - 持续更新

自己在开发AI应用的过程总结的 Prompt - 持续更新 0. 引言1. 让模型以"中文"进行回复2. 控制模型仅输出"hi"3. 让模型"提供简单、清晰而具体的回答"4. 让模型"在最后说谢谢" 0. 引言 我想,我们多半有着相似的经历&#xf…...

STM32——OLED菜单

文章目录 一.补充二. 二级菜单代码 简介:首先在我的51 I2C里面有OLED详细讲解,本期代码从51OLED基础上移植过来的,可以先看完那篇文章,在看这个,然后按键我是用的定时器扫描不会堵塞程序,可以翻开我的文章有单独的定时…...

Open CASCADE学习|布尔运算后消除内部拓扑

在CAD建模中,布尔运算是一种逻辑运算方法,通过这种方法,可以创建、修改或组合几何对象。布尔运算主要包括并集(UNION)、交集(INTERSECT)和差集(SUBTRACT)三种运算。 并集…...

【数据仓库】主题域和数据域

数据域与主题域区别 https://www.cnblogs.com/datadance/p/16898254.html 数据域是自下而上,以业务数据视角来划分数据,一般进行完业务系统数据调研之后就可以进行数据域的划分。针对公共明细层(DWD)进行主题划分。主题域则自上而…...

C#,二分法(Bisection Method)求解方程的算法与源代码

1 二分法 二分法是一种分治算法&#xff0c;是一种数学思维。 对于区间[a&#xff0c;b]上连续不断且f&#xff08;a&#xff09;f&#xff08;b&#xff09;<0的函数yf&#xff08;x&#xff09;&#xff0c;通过不断地把函数f&#xff08;x&#xff09;的零点所在的区间…...

Portainer安装/快速上手

前置&#xff1a; 管理docker容器的工具 Portainer: Container Management Software for Kubernetes and Docker https://docs.portainer.io/v/ce-2.9/start/install/server/docker/linux 官网安装教程 Install Portainer CE with Docker on Linux - Portainer Documentat…...

恢复被.target勒索病毒加密的数据文件:拒绝向.target勒索病毒支付赎金

引言&#xff1a; 在当今数字时代&#xff0c;勒索病毒已成为网络安全领域的一大威胁&#xff0c;而.target勒索病毒是其中引起广泛关注的一种变种。本文将深入探讨.target勒索病毒的特点以及被其加密的数据文件恢复方法。数据的重要性不容小觑&#xff0c;您可添加我们的技术…...

【Linux网络编程六】服务器守护进程化Daemon

【Linux网络编程六】服务器守护进程化Daemon 一.背景知识&#xff1a;前台与后台二.相关操作三.Linux的进程间关系四.自成会话五.守护进程四步骤六.服务器守护进程化 一.背景知识&#xff1a;前台与后台 核心知识就是一个用户在启动Linux时&#xff0c;都会给一个session会话&a…...

MySQL之json数据操作

1 MySQL之JSON数据 总所周知&#xff0c;mysql5.7以上提供了一种新的字段格式json&#xff0c;大概是mysql想把非关系型和关系型数据库一口通吃&#xff0c;所以推出了这种非常好用的格式&#xff0c;这样&#xff0c;我们的很多基于mongoDB的业务都可以用mysql去实现了。当然…...

【大厂AI课学习笔记】【2.1 人工智能项目开发规划与目标】(5)数据管理

今天学习了数据管理&#xff0c;以及数据管理和数据治理的区别和联系。 数据管理&#xff1a;利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程其目的在于充分有效地发挥数据的作用。 实现数据有效管理的关键是数据组织。 数据管理和数据治理的区别&am…...

Linux满载CPU和运行内存的方法

查询CPU详细信息命令如下&#xff1a; 查看物理CPU型号&#xff1a; cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c查看物理CPU个数 cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l查看每个物理CPU中core的个数(即核数) cat /proc/cpuinfo…...

每日五道java面试题之java基础篇(九)

目录&#xff1a; 第一题 你们项⽬如何排查JVM问题第二题 ⼀个对象从加载到JVM&#xff0c;再到被GC清除&#xff0c;都经历了什么过程&#xff1f;第三题 怎么确定⼀个对象到底是不是垃圾&#xff1f;第四题 JVM有哪些垃圾回收算法&#xff1f;第五题 什么是STW&#xff1f; 第…...

spring @Transactional注解参数详解

事物注解方式: Transactional 当标于类前时, 标示类中所有方法都进行事物处理 , 例子: 1 Transactional public class TestServiceBean implements TestService {}当类中某些方法不需要事物时: Transactional public class TestServiceBean implements TestService {private…...

D - 串结构练习——字符串连接

串结构练习——字符串连接 Description 给定两个字符串string1和string2&#xff0c;将字符串string2连接在string1的后面&#xff0c;并将连接后的字符串输出。 连接后字符串长度不超过110。 Input 输入包含多组数据&#xff0c;每组测试数据包含两行&#xff0c;第一行代表s…...

什么样的服务器是高性能服务器?

首先&#xff0c;高性能服务器应具备高处理能力。随着业务的不断扩展和数据量的爆炸性增长&#xff0c;高性能服务器需要具备强大的计算能力&#xff0c;能够快速处理各种复杂的业务和数据。这要求高性能服务器采用先进的处理器技术&#xff0c;如多核处理器、GPU加速等&#x…...

数学建模【线性规划】

一、线性规划简介 线性规划通俗讲就是“有限的资源中获取最大的收益”&#xff08;优化类问题&#xff09;。而且所有的变量关系式都是线性的&#xff0c;不存在x、指数函数、对数函数、反比例函数、三角函数等。此模型要优化的就是在一组线性约束条件下&#xff0c;求线性目标…...

ChatGPT的大致原理

国外有个博主写了一篇博文&#xff0c;名字叫TChatGPT: Explained to KidsQ」&#xff0c; 直译过来就是&#xff0c;给小孩子解释什么是ChatGPT。 因为现实是很多的小孩子已经可以用父母的手机版ChatGPT玩了 &#xff0c;ChatGPT几乎可以算得上无所不知&#xff0c;起码给小孩…...

蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记

1 bfs广度优先搜索 1.1 是什么 1.2怎么实现 2案例学习 2.1.走迷宫 2.2.P1443 马的遍历 2.3. 九宫重排&#xff08;看答案学的&#xff0c;实在写不来&#xff09; 2.4.青蛙跳杯子&#xff08;学完九宫重排再做bingo&#xff09; 2.5. 长草 3.总结 1 bfs广度优先搜索 【P…...

轮播图的五种写法(原生、vue2、vue3、react类组件,react函数组件)

轮播图效果是一种在网页或应用程序中展示多张图片或内容的方式,通常以水平或垂直的方式循环播放。本文使用原生、vue2、vue3、react类组件,react函数组件五种写法实现了简单的轮播图效果,需要更多轮播效果需要再增加样式或者动画。 淡入淡出效果:每张图片渐渐淡入显示,然后…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...