当前位置: 首页 > news >正文

peft模型微调--Prompt Tuning

模型微调(Model Fine-Tuning)是指在预训练模型的基础上,针对特定任务进行进一步的训练以优化模型性能的过程。预训练模型通常是在大规模数据集上通过无监督或自监督学习方法预先训练好的,具有捕捉语言或数据特征的强大能力。

PEFT(Parameter-Efficient Fine-Tuning)是一种针对大模型微调的技术,其核心思想是在保持大部分预训练模型参数不变的基础上,仅对一小部分额外参数进行微调,以实现高效的资源利用和性能优化。这种方法对于那些计算资源有限、但又需要针对特定任务调整大型语言模型(如LLM:Large Language Models)的行为时特别有用。

在应用PEFT技术进行模型微调时,通常采用以下策略之一或组合:

Adapter Layers: 在模型的各个层中插入适配器模块,这些适配器模块通常具有较低的维度,并且仅对这部分新增的参数进行微调,而不改变原模型主体的参数。

Prefix Tuning / Prompt Tuning: 通过在输入序列前添加可学习的“提示”向量(即prefix或prompt),来影响模型的输出结果,从而达到微调的目的,而无需更改模型原有权重。

LoRA (Low-Rank Adaptation): 使用低秩矩阵更新原始模型权重,这样可以大大减少要训练的参数数量,同时保持模型的表达能力。

P-Tuning V1/V2: 清华大学提出的一种方法,它通过学习一个连续的prompt嵌入向量来指导模型生成特定任务相关的输出。

冻结(Freezing)大部分模型参数: 只对模型的部分层或头部(如分类器层)进行微调,其余部分则保持预训练时的状态不变。

下面简单介绍一个通过peft使用Prompt Tuning对模型进行微调训练的简单流程。

# 基于peft使用prompt tuning对生成式对话模型进行微调 
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
# 数据加载
ds = Dataset.load_from_disk("/alpaca_data_zh")
print(ds[:3])
# 数据处理
tokenizer = AutoTokenizer.from_pretrained("../models/bloom-1b4-zh")
# 数据处理函数
def process_func(example):MAX_LENGTH = 256input_ids, attention_mask, labels = [], [], []instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")response = tokenizer(example["output"] + tokenizer.eos_token)input_ids = instruction["input_ids"] + response["input_ids"]attention_mask = instruction["attention_mask"] + response["attention_mask"]labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]if len(input_ids) > MAX_LENGTH:input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}# 数据处理
tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
print(tokenized_ds)
# 模型创建
model = AutoModelForCausalLM.from_pretrained("../models/bloom-1b4-zh", low_cpu_mem_usage=True)
# 套用peft对模型进行参数微调
from peft import PromptTuningConfig, get_peft_model, TaskType, PromptTuningInit# 1、配置文件参数
config = PromptTuningConfig(task_type=TaskType.CAUSAL_LM,prompt_tuning_init=PromptTuningInit.TEXT,prompt_tuning_init_text="下面是一段人与机器人的对话。",num_virtual_tokens=len(tokenizer("下面是一段人与机器人的对话。")["input_ids"]),tokenizer_name_or_path="../models/bloom-1b4-zh")# 2、创建模型
model = get_peft_model(model, config)
# 查看模型的训练参数
model.print_trainable_parameters()
# 配置训练参数
args = TrainingArguments(output_dir="./peft_model",per_device_train_batch_size=1,gradient_accumulation_steps=8,logging_steps=10,num_train_epochs=1
)# 创建训练器
trainer = Trainer(model=model,args=args,train_dataset=tokenized_ds,data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
# 模型训练
trainer.train()
# 模型推理
peft_model = model.cuda()
ipt = tokenizer("Human: {}\n{}".format("周末去重庆怎么玩?", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(model.device)
print(tokenizer.decode(peft_model.generate(**ipt, max_length=256, do_sample=True)[0], skip_special_tokens=True))

相关文章:

peft模型微调--Prompt Tuning

模型微调(Model Fine-Tuning)是指在预训练模型的基础上,针对特定任务进行进一步的训练以优化模型性能的过程。预训练模型通常是在大规模数据集上通过无监督或自监督学习方法预先训练好的,具有捕捉语言或数据特征的强大能力。 PEF…...

【算法训练营】周测1

清华大学驭风计划课程链接 学堂在线 - 精品在线课程学习平台 (xuetangx.com) 如果需要答案代码可以私聊博主 有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~ 考题11-1 题目描述 有一个初始时为空的序列,你的任务是维护这个…...

PyTorch Dataset、DataLoader长度

pytorch 可以直接对 Dataset 对象用 len() 求数据集大小,而 DataLoader 对象也可以用 len(),不过求得的是用这个 loader 在一个 epoch 能有几多 iteration,容易混淆。本文记录几种情况的对比。 from torch.utils.data import Dataset, DataL…...

动态IP和静态IP

与静态 IP 地址不同,动态 IP 地址会定期更改。让我们来分析一下: 1. IP 地址基础知识: * IP 地址是一个数字标签,用于唯一标识网络上的每个设备。 * 当设备通过网络通信时,数据会在它们之间来回传输。每个数据包都标有…...

中电金信:技术实践|Flink维度表关联方案解析

导语:Flink是一个对有界和无界数据流进行状态计算的分布式处理引擎和框架,主要用来处理流式数据。它既可以处理有界的批量数据集,也可以处理无界的实时流数据,为批处理和流处理提供了统一编程模型。 维度表可以看作是用户来分析数…...

HQL 55 题【持续更新】

前言 今天开始为期一个多月的 HQL 练习,共 55 道 HQL 题,大概每天两道,从初级函数到中级函数。这次的练习不再是基础的 join 那种通用 SQL 语法了,而是引入了更多 Hive 的函数(单行函数、窗口函数等)。 我…...

lqb省赛日志[8/37]-[搜索·DFS·BFS]

一只小蒟蒻备考蓝桥杯的日志 文章目录 笔记DFS记忆化搜索 刷题心得小结 笔记 DFS 参考 深度优先搜索(DFS) 总结(算法剪枝优化总结) DFS的模板框架: function dfs(当前状态){if(当前状态 目的状态){}for(寻找新状态){if(状态合法){vis[访问该点];dfs(新状态);?…...

uni app 钓鱼小游戏

最近姑娘喜欢玩那个餐厅游戏里的钓鱼 &#xff0c;经常让看广告&#xff0c;然后就点点点... 自己写个吧。小鱼的图片自己搞。 有问题自己改&#xff0c;不要私信我 <template><view class"page_main"><view class"top_linear"><v…...

openssl3.2 - note - Decoders and Encoders with OpenSSL

文章目录 openssl3.2 - note - Decoders and Encoders with OpenSSL概述笔记编码器/解码器的调用链OSSL_STORE 编码器/解码器的名称和属性OSSL_FUNC_decoder_freectx_fnOSSL_FUNC_encoder_encode_fn官方文档END openssl3.2 - note - Decoders and Encoders with OpenSSL 概述 …...

分享几个 Selenium 自动化常用操作

最近工作会用到selenium来自动化操作一些重复的工作&#xff0c;那么在用selenium写代码的过程中&#xff0c;又顺手整理了一些常用的操作&#xff0c;分享给大家。 常用元素定位方法 虽然有关selenium定位元素的方法有很多种&#xff0c;但是对于没有深入学习&#xff0c;尤…...

【Python】【数据类型】List (列表) 的常见操作

1. 创建 使用内置函数list()将字符串创建为列表 list1 [a, b, c, d] print(list1 , list1) # list1 [a, b, c, d] list1 list(abcd) print(list1) # [a, b, c, d]使用列表推导式创建列表 list1 [x for x in range(1, 10)] print(list1) # [1, 2, 3, 4, 5, 6, 7, 8, 9]多…...

【C语言】病人信息管理系统

本设计实现了一个病人信息管理系统,通过链表数据结构来存储和操作病人的信息。用户可以通过菜单选择录入病人信息、查找病人信息、修改病人信息、删除病人信息、查看所有病人信息和查看专家信息等操作,还可以根据病人的科室、姓名、性别和联系方式进行查找,以及支持修改病人…...

Java Spring Boot 接收时间格式的参数

报错 JSON parse error: Cannot deserialize value of type java.time.LocalDateTime from String “2024-03-14 12:30:00”: Failed to deserialize java.time.LocalDateTime: (java.time.format.DateTimeParseException) Text ‘2024-03-14 12:30:00’ could not be parsed a…...

【C++】实现红黑树

目录 一、认识红黑树1.1 概念1.2 定义 二、实现红黑树2.1 插入2.2 与AVL树对比 一、认识红黑树 1.1 概念 红黑树是一个二叉搜索树&#xff0c;与AVL树相比&#xff0c;红黑树不再使用平衡因子来控制树的左右子树高度差&#xff0c;而是用颜色来控制平衡&#xff0c;颜色为红色…...

爬虫(六)

复习回顾: 01.浏览器一个网页的加载全过程1. 服务器端渲染html的内容和数据在服务器进行融合.在浏览器端看到的页面源代码中. 有你需要的数据2. 客户端(浏览器)渲染html的内容和数据进行融合是发生在你的浏览器上的.这个过程一般通过脚本来完成(javascript)我们通过浏览器可以…...

最长连续序列 - LeetCode 热题 3

大家好&#xff01;我是曾续缘&#x1f49d; 今天是《LeetCode 热题 100》系列 发车第 3 天 哈希第 3 题 ❤️点赞 &#x1f44d; 收藏 ⭐再看&#xff0c;养成习惯 最长连续序列 给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素…...

运营模型—RFM 模型

运营模型—RFM 模型 RFM 是什么其实我们前面的文章介绍过,这里我们不再赘述,可以参考运营数据分析模型—用户分层分析,今天我们要做的事情是如何落地RFM 模型 我们的数据如下,现在我们就开始进行数据处理 数据预处理 因为数据预处理没有一个固定的套路,都是根据数据的实…...

YOLOv9|加入2023Gold YOLO中的GD机制!遥遥领先!

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;助力高效涨点&#xff01;&#xff01;&#xff01; 一、Gold YOLO摘要 在过去的几年里&#xff0c;YOLO系列模型已经成为实时目标检测领域的领先方法。许多研究通过修改体系结构、增加数据和设计新的损…...

WRF模型运行教程(ububtu系统)--III.运行WRF模型(官网案例)

零、创建DATA目录 # 1.创建一个DATA目录用于存放数据&#xff08;一般为fnl数据&#xff0c;放在Build_WRF目录下&#xff09;。 mkdir DATA # 2.进入 DATA cd DATA 一、WPS预处理 在模拟之前先确定模拟域&#xff08;即模拟范围&#xff09;,并进行数据预处理&#xff08…...

html和winform webBrowser控件交互并播放视频(包含转码)

1、 为了使网页能够与winform交互 将com的可访问性设置为真 [System.Security.Permissions.PermissionSet(System.Security.Permissions.SecurityAction.Demand, Name "FullTrust")][System.Runtime.InteropServices.ComVisibleAttribute(true)] 2、在webBrow…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...