张量维度改变总结
文章目录
- 一、view() 或 reshape()
- 二、unsqueeze()
- 三、squeeze()
- 四、transpose()
- 五、torch.expand_dims
一、view() 或 reshape()
view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回一个新的张量。例如:
import torchx = torch.randn(2, 3, 4) # 创建一个形状为 [2, 3, 4] 的张量x_viewed = x.view(2, 12) # 改变形状为 [2, 12]
x_reshaped = x.reshape(6, 4) # 改变形状为 [6, 4]
二、unsqueeze()
unsqueeze(): 这个函数可以在指定位置插入一个新的维度。它接受一个整数作为参数,表示要插入的位置。例如:
import torchx = torch.randn(3, 4) # 创建一个形状为 [3, 4] 的张量x.unsqueeze(0) # 在第 0 个位置插入一个新的维度,形状变为 [1, 3, 4]
x.unsqueeze(1) # 在第 1 个位置插入一个新的维度,形状变为 [3, 1, 4]
import torchx = torch.randn(2, 3) # 创建一个形状为 [2, 3] 的张量x_unsqueezed = torch.unsqueeze(x, dim=0) # 在第 0 个位置插入一个新的维度,形状变为 [1, 2, 3]
三、squeeze()
squeeze(): 这个函数可以删除维度为 1 的维度。它会返回一个新的张量,其中已删除了所有维度为 1 的维度。例如:
import torchx = torch.randn(1, 3, 1, 4) # 创建一个形状为 [1, 3, 1, 4] 的张量x.squeeze() # 删除所有维度为 1 的维度,形状变为 [3, 4]
四、transpose()
transpose(): 这个函数可以交换张量的维度顺序。它接受两个整数作为参数,表示要交换的维度的位置。例如:
import torchx = torch.randn(2, 3) # 创建一个形状为 [2, 3] 的张量x.transpose(0, 1) # 交换维度 0 和维度 1 的位置,形状变为 [3, 2]
五、torch.expand_dims
torch.expand_dims(input, dim): 这个函数接受一个张量 input 和一个整数 dim,表示要在 dim 位置插入一个新的维度。它会返回一个新的张量,其中插入了一个维度。例如:
import torchx = torch.randn(2, 3) # 创建一个形状为 [2, 3] 的张量x_expanded = torch.expand_dims(x, dim=1) # 在第 1 个位置插入一个新的维度,形状变为 [2, 1, 3]
相关文章:
张量维度改变总结
文章目录 一、view() 或 reshape()二、unsqueeze()三、squeeze()四、transpose()五、torch.expand_dims 一、view() 或 reshape() view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回…...
C++ ezOptionParse的用法
在网上找了一下,发现并没有很多关于这个小型头文件的资料 只好自己上了 int main(int argc, const char * argv[]) {ezOptionParser opt;opt.overview "Demo of parsers features."; //概要说明,一般需要填写,简要介绍程序的作用opt.synta…...

MATLAB:一些杂例
a 2; b 5; x 0:pi/40:pi/2; %增量为pi/40 y b*exp(-a*x).*sin(b*x).*(0.012*x.^4-0.15*x.^30.075*x.^22.5*x); %点乘的意义 z y.^2; %点乘的意义 w(:,1) x; %组成w,第一列为x w(:,2) y; %组成w,第二列为y w(:,3) z; %组成w,第三列为z…...

使用OpenCV实现两张图像融合在一起
简单介绍 图像融合技术是一种结合多个不同来源或不同传感器捕获的同一场景的图像数据,以生成一幅更全面、更高质量的单一图像的过程。这种技术广泛应用于遥感、医学影像分析、计算机视觉等多个领域。常见的图像融合技术包括基于像素级、特征级和决策级的融合方法&a…...
PyTorch学习笔记之基础函数篇(十)
文章目录 6 张量操作6.1 torch.reshape()函数6.1 torch.transpose()函数6.1 torch.permute()函数6.1 torch.unsqueez()函数6.1 torch.squeeze()函数6.1 torch.cat()函数6.1 torch.stack()函数 6 张量操作 6.1 torch.reshape()函数 torch.reshape() 是 PyTorch 中的一个函数&a…...

kubernetes部署集群
kubernetes部署集群 集群部署获取镜像安装docker[集群]阿里仓库下载[集群]集群部署[集群]集群环境配置[集群]关闭系统Swap[集群]安装Kubeadm包[集群]配置启动kubelet[集群]配置master节点[master]配置使用网络插件[master]node加入集群[node]后续检查[master]测试集群 集群部署…...
软件工程师,该偿还一下技术债了
概述 在软件开发领域,有一个特殊的概念——“技术债”,它源于Ward Cunningham的一个比喻,主要用来描述那些为了短期利益而选择的快捷方式、临时解决方案或者未完成的工作,它们会在未来产生额外的技术成本。就像金融债务一样&#…...
HTML5、CSS3面试题(三)
HTML5、CSS3面试题(二) rem 适配方法如何计算 HTML 跟字号及适配方案?(必会) 通用方案 1、设置根 font-size:625%(或其它自定的值,但换算规则 1rem 不能小于 12px) 2…...

pytorch之诗词生成6--eval
先上代码: import tensorflow as tf from dataset import tokenizer import settings import utils# 加载训练好的模型 model tf.keras.models.load_model(r"E:\best_model.h5") # 随机生成一首诗 print(utils.generate_random_poetry(tokenizer, model)…...
Django自定义中间件
自定义中间件 传统方法的的五大钩子函数:(需要调用MiddlewareMixin类) process_request,请求刚到来,执行视图之前;正序 process_view,路由转发到视图,执行视图之前;正序…...

【JavaScript】JavaScript 运算符 ① ( 运算符分类 | 算术运算符 | 浮点数 的 算术运算 精度问题 )
文章目录 一、JavaScript 运算符1、运算符分类2、算术运算符3、浮点数 的 算术运算 精度问题 一、JavaScript 运算符 1、运算符分类 在 JavaScript 中 , 运算符 又称为 " 操作符 " , 可以实现 赋值 , 比较 > < , 算术运算 -*/ 等功能 , 运算符功能主要分为以下…...

掘根宝典之C++迭代器简介
简介 迭代器是一种用于遍历容器元素的对象。它提供了一种统一的访问方式,使程序员可以对容器中的元素进行逐个访问和操作,而不需要了解容器的内部实现细节。 C标准库里每个容器都定义了迭代器 迭代器的作用类似于指针,可以指向容器中的某个…...
DP-力扣 120.三角形最小路径和
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。相邻的结点: 下标与上一层结点下标相同或者等于上一层结点下标 1 的两个结点。样例: 例如,给定三角形: [ [2], [3,4], [6,5,7], [4…...
【WEEK3】学习目标及总结【SpringMVC】【中文版】
学习目标: 三周完成SpringMVC入门——第三周 感觉这周很难完成任务了,大概率还会有第四周 学习内容: 参考视频教程【狂神说Java】SpringMVC最新教程IDEA版通俗易懂数据处理JSON交互处理 学习时间及产出: 第三周 MON~FRI 2024.…...
peft模型微调--Prompt Tuning
模型微调(Model Fine-Tuning)是指在预训练模型的基础上,针对特定任务进行进一步的训练以优化模型性能的过程。预训练模型通常是在大规模数据集上通过无监督或自监督学习方法预先训练好的,具有捕捉语言或数据特征的强大能力。 PEF…...

【算法训练营】周测1
清华大学驭风计划课程链接 学堂在线 - 精品在线课程学习平台 (xuetangx.com) 如果需要答案代码可以私聊博主 有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~ 考题11-1 题目描述 有一个初始时为空的序列,你的任务是维护这个…...
PyTorch Dataset、DataLoader长度
pytorch 可以直接对 Dataset 对象用 len() 求数据集大小,而 DataLoader 对象也可以用 len(),不过求得的是用这个 loader 在一个 epoch 能有几多 iteration,容易混淆。本文记录几种情况的对比。 from torch.utils.data import Dataset, DataL…...
动态IP和静态IP
与静态 IP 地址不同,动态 IP 地址会定期更改。让我们来分析一下: 1. IP 地址基础知识: * IP 地址是一个数字标签,用于唯一标识网络上的每个设备。 * 当设备通过网络通信时,数据会在它们之间来回传输。每个数据包都标有…...

中电金信:技术实践|Flink维度表关联方案解析
导语:Flink是一个对有界和无界数据流进行状态计算的分布式处理引擎和框架,主要用来处理流式数据。它既可以处理有界的批量数据集,也可以处理无界的实时流数据,为批处理和流处理提供了统一编程模型。 维度表可以看作是用户来分析数…...
HQL 55 题【持续更新】
前言 今天开始为期一个多月的 HQL 练习,共 55 道 HQL 题,大概每天两道,从初级函数到中级函数。这次的练习不再是基础的 join 那种通用 SQL 语法了,而是引入了更多 Hive 的函数(单行函数、窗口函数等)。 我…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...