当前位置: 首页 > news >正文

张量维度改变总结

文章目录

  • 一、view() 或 reshape()
  • 二、unsqueeze()
  • 三、squeeze()
  • 四、transpose()
  • 五、torch.expand_dims


一、view() 或 reshape()

  view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回一个新的张量。例如:

import torchx = torch.randn(2, 3, 4)  # 创建一个形状为 [2, 3, 4] 的张量x_viewed = x.view(2, 12)  # 改变形状为 [2, 12]
x_reshaped = x.reshape(6, 4)  # 改变形状为 [6, 4]

二、unsqueeze()

  unsqueeze(): 这个函数可以在指定位置插入一个新的维度。它接受一个整数作为参数,表示要插入的位置。例如:

import torchx = torch.randn(3, 4)  # 创建一个形状为 [3, 4] 的张量x.unsqueeze(0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 3, 4]
x.unsqueeze(1)  # 在第 1 个位置插入一个新的维度,形状变为 [3, 1, 4]
import torchx = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量x_unsqueezed = torch.unsqueeze(x, dim=0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 2, 3]

三、squeeze()

  squeeze(): 这个函数可以删除维度为 1 的维度。它会返回一个新的张量,其中已删除了所有维度为 1 的维度。例如:

import torchx = torch.randn(1, 3, 1, 4)  # 创建一个形状为 [1, 3, 1, 4] 的张量x.squeeze()  # 删除所有维度为 1 的维度,形状变为 [3, 4]

四、transpose()

  transpose(): 这个函数可以交换张量的维度顺序。它接受两个整数作为参数,表示要交换的维度的位置。例如:

import torchx = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量x.transpose(0, 1)  # 交换维度 0 和维度 1 的位置,形状变为 [3, 2]

五、torch.expand_dims

  torch.expand_dims(input, dim): 这个函数接受一个张量 input 和一个整数 dim,表示要在 dim 位置插入一个新的维度。它会返回一个新的张量,其中插入了一个维度。例如:

import torchx = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量x_expanded = torch.expand_dims(x, dim=1)  # 在第 1 个位置插入一个新的维度,形状变为 [2, 1, 3]

相关文章:

张量维度改变总结

文章目录 一、view() 或 reshape()二、unsqueeze()三、squeeze()四、transpose()五、torch.expand_dims 一、view() 或 reshape() view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回…...

C++ ezOptionParse的用法

在网上找了一下,发现并没有很多关于这个小型头文件的资料 只好自己上了 int main(int argc, const char * argv[]) {ezOptionParser opt;opt.overview "Demo of parsers features."; //概要说明,一般需要填写,简要介绍程序的作用opt.synta…...

MATLAB:一些杂例

a 2; b 5; x 0:pi/40:pi/2; %增量为pi/40 y b*exp(-a*x).*sin(b*x).*(0.012*x.^4-0.15*x.^30.075*x.^22.5*x); %点乘的意义 z y.^2; %点乘的意义 w(:,1) x; %组成w,第一列为x w(:,2) y; %组成w,第二列为y w(:,3) z; %组成w,第三列为z…...

使用OpenCV实现两张图像融合在一起

简单介绍 图像融合技术是一种结合多个不同来源或不同传感器捕获的同一场景的图像数据,以生成一幅更全面、更高质量的单一图像的过程。这种技术广泛应用于遥感、医学影像分析、计算机视觉等多个领域。常见的图像融合技术包括基于像素级、特征级和决策级的融合方法&a…...

PyTorch学习笔记之基础函数篇(十)

文章目录 6 张量操作6.1 torch.reshape()函数6.1 torch.transpose()函数6.1 torch.permute()函数6.1 torch.unsqueez()函数6.1 torch.squeeze()函数6.1 torch.cat()函数6.1 torch.stack()函数 6 张量操作 6.1 torch.reshape()函数 torch.reshape() 是 PyTorch 中的一个函数&a…...

kubernetes部署集群

kubernetes部署集群 集群部署获取镜像安装docker[集群]阿里仓库下载[集群]集群部署[集群]集群环境配置[集群]关闭系统Swap[集群]安装Kubeadm包[集群]配置启动kubelet[集群]配置master节点[master]配置使用网络插件[master]node加入集群[node]后续检查[master]测试集群 集群部署…...

软件工程师,该偿还一下技术债了

概述 在软件开发领域,有一个特殊的概念——“技术债”,它源于Ward Cunningham的一个比喻,主要用来描述那些为了短期利益而选择的快捷方式、临时解决方案或者未完成的工作,它们会在未来产生额外的技术成本。就像金融债务一样&#…...

HTML5、CSS3面试题(三)

HTML5、CSS3面试题(二) rem 适配方法如何计算 HTML 跟字号及适配方案?(必会) 通用方案 1、设置根 font-size:625%(或其它自定的值,但换算规则 1rem 不能小于 12px) 2…...

pytorch之诗词生成6--eval

先上代码: import tensorflow as tf from dataset import tokenizer import settings import utils# 加载训练好的模型 model tf.keras.models.load_model(r"E:\best_model.h5") # 随机生成一首诗 print(utils.generate_random_poetry(tokenizer, model)…...

Django自定义中间件

自定义中间件 传统方法的的五大钩子函数:(需要调用MiddlewareMixin类) process_request,请求刚到来,执行视图之前;正序 process_view,路由转发到视图,执行视图之前;正序…...

【JavaScript】JavaScript 运算符 ① ( 运算符分类 | 算术运算符 | 浮点数 的 算术运算 精度问题 )

文章目录 一、JavaScript 运算符1、运算符分类2、算术运算符3、浮点数 的 算术运算 精度问题 一、JavaScript 运算符 1、运算符分类 在 JavaScript 中 , 运算符 又称为 " 操作符 " , 可以实现 赋值 , 比较 > < , 算术运算 -*/ 等功能 , 运算符功能主要分为以下…...

掘根宝典之C++迭代器简介

简介 迭代器是一种用于遍历容器元素的对象。它提供了一种统一的访问方式&#xff0c;使程序员可以对容器中的元素进行逐个访问和操作&#xff0c;而不需要了解容器的内部实现细节。 C标准库里每个容器都定义了迭代器 迭代器的作用类似于指针&#xff0c;可以指向容器中的某个…...

DP-力扣 120.三角形最小路径和

给定一个三角形&#xff0c;找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。相邻的结点&#xff1a; 下标与上一层结点下标相同或者等于上一层结点下标 1 的两个结点。样例&#xff1a; 例如&#xff0c;给定三角形&#xff1a; [ [2], [3,4], [6,5,7], [4…...

【WEEK3】学习目标及总结【SpringMVC】【中文版】

学习目标&#xff1a; 三周完成SpringMVC入门——第三周 感觉这周很难完成任务了&#xff0c;大概率还会有第四周 学习内容&#xff1a; 参考视频教程【狂神说Java】SpringMVC最新教程IDEA版通俗易懂数据处理JSON交互处理 学习时间及产出&#xff1a; 第三周 MON~FRI 2024.…...

peft模型微调--Prompt Tuning

模型微调&#xff08;Model Fine-Tuning&#xff09;是指在预训练模型的基础上&#xff0c;针对特定任务进行进一步的训练以优化模型性能的过程。预训练模型通常是在大规模数据集上通过无监督或自监督学习方法预先训练好的&#xff0c;具有捕捉语言或数据特征的强大能力。 PEF…...

【算法训练营】周测1

清华大学驭风计划课程链接 学堂在线 - 精品在线课程学习平台 (xuetangx.com) 如果需要答案代码可以私聊博主 有任何疑问或者问题&#xff0c;也欢迎私信博主&#xff0c;大家可以相互讨论交流哟~~ 考题11-1 题目描述 有一个初始时为空的序列&#xff0c;你的任务是维护这个…...

PyTorch Dataset、DataLoader长度

pytorch 可以直接对 Dataset 对象用 len() 求数据集大小&#xff0c;而 DataLoader 对象也可以用 len()&#xff0c;不过求得的是用这个 loader 在一个 epoch 能有几多 iteration&#xff0c;容易混淆。本文记录几种情况的对比。 from torch.utils.data import Dataset, DataL…...

动态IP和静态IP

与静态 IP 地址不同&#xff0c;动态 IP 地址会定期更改。让我们来分析一下&#xff1a; 1. IP 地址基础知识&#xff1a; * IP 地址是一个数字标签&#xff0c;用于唯一标识网络上的每个设备。 * 当设备通过网络通信时&#xff0c;数据会在它们之间来回传输。每个数据包都标有…...

中电金信:技术实践|Flink维度表关联方案解析

导语&#xff1a;Flink是一个对有界和无界数据流进行状态计算的分布式处理引擎和框架&#xff0c;主要用来处理流式数据。它既可以处理有界的批量数据集&#xff0c;也可以处理无界的实时流数据&#xff0c;为批处理和流处理提供了统一编程模型。 维度表可以看作是用户来分析数…...

HQL 55 题【持续更新】

前言 今天开始为期一个多月的 HQL 练习&#xff0c;共 55 道 HQL 题&#xff0c;大概每天两道&#xff0c;从初级函数到中级函数。这次的练习不再是基础的 join 那种通用 SQL 语法了&#xff0c;而是引入了更多 Hive 的函数&#xff08;单行函数、窗口函数等&#xff09;。 我…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇

根据 QYResearch 发布的市场报告显示&#xff0c;全球市场规模预计在 2031 年达到 9848 万美元&#xff0c;2025 - 2031 年期间年复合增长率&#xff08;CAGR&#xff09;为 3.7%。在竞争格局上&#xff0c;市场集中度较高&#xff0c;2024 年全球前十强厂商占据约 74.0% 的市场…...

ThreadLocal 源码

ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物&#xff0c;因为每个访问一个线程局部变量的线程&#xff08;通过其 get 或 set 方法&#xff09;都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段&#xff0c;这些类希望将…...

React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?

系列回顾&#xff1a; 在上一篇《React核心概念&#xff1a;State是什么&#xff1f;》中&#xff0c;我们学习了如何使用useState让一个组件拥有自己的内部数据&#xff08;State&#xff09;&#xff0c;并通过一个计数器案例&#xff0c;实现了组件的自我更新。这很棒&#…...