当前位置: 首页 > news >正文

【大数据】五、yarn基础

Yarn

Yarn 是用来做分布式系统中的资源协调技术

MapReduce 1.x

对于 MapReduce 1.x 的版本上:

由 Client 发起计算请求,Job Tracker 接收请求之后分发给各个TaskTrack进行执行

在这个阶段,资源的管理与请求的计算是集成在 mapreduce 上的,这种架构会导致 mapreduce 的功能过于臃肿,也会衍生出一系列的问题。

而 YARN 的出现及时的对这个问题作出了改变,YARN 就类似于一个操作系统,mapreduce 就类似于运行在 YARN 这个操作系统上的实际程序

YARN 同时也支持 Spark、Flink、Taz 等分布式计算技术,这使得 YARN 进一步被发扬光大

YARN 基础

Yarn 的基础原理就是将资源管理 与 作业调度(监视)功能进行拆分,由 ResourceManager 进行资源管理,由 ApplicationMaster 进行作业调度与监视功能

ResourceManager

NodeManager

NodeManager

Client 将作业提交给 ResourceManager 进行资源调度

YARN 基础配置

ResourceManager 会将任务分配给一个个的 NodeManager 每个NodeManager 中都有一个个的Contaniner,这一个个的 Container中就保存着一个个的任务的计算,同时,NodeManager 中也保存着一个个任务的 Application Master、每一个 Container 的计算完成后会汇报给 Application Master 其结束的信息,Application Master 会及时向 Resource Manager 汇报其情况信息。

修改 mapred-site.xml:

在最后添加;

<configuration><!-- 指定Mapreduce 的作业执行时,用yarn进行资源调度 --><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=/export/server/hadoop-3.3.6</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=/export/server/hadoop-3.3.6</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=/export/server/hadoop-3.3.6</value></property>
</configuration>

修改 yarn-site.xml

<configuration><!-- Site specific YARN configuration properties --><!-- 设置ResourceManager --><property><name>yarn.resourcemanager.hostname</name><value>node1</value></property><!--配置yarn的shuffle服务--><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name><value>org.apache.hadoop.mapred.ShuffleHandler</value></property>
</configuration>

在 hadoop-env.sh 中添加:

export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

之后将修改好的这几个文件分发给其他节点

scp mapred-site.xml yarn-site.xml hadoop-env.sh node2:$PWD
scp mapred-site.xml yarn-site.xml hadoop-env.sh node3:$PWD

之后就可以打开 yarn.sh:

start-yarn.sh

之后在对应的 8088 端口就可以找到对应的可视化网页信息了

进行词频统计(wordcount)的测试:

hadoop jar /export/server/hadoop-3.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar wordcount /input /output1

就可以顺利调用对应的东西了。

另外,如果我们希望查看日志信息,还需要再 mapred-site.xml 中继续进行配置:

    <property><name>MapReduce.jobhistory.address</name><value>node1:10020</value></property><property><name>MapReduce.jobhistory.webapp.address</name><value>node1:19888</value></property>

继续在 yarn.xml 中配置:

    <!-- 添加如下配置 --><!-- 是否需要开启⽇志聚合 --><!-- 开启⽇志聚合后,将会将各个Container的⽇志保存在yarn.nodemanager.remote-app-logdir的位置 --><!-- 默认保存在/tmp/logs --><property><name>yarn.log-aggregation-enable</name><value>true</value></property><!-- 历史⽇志在HDFS保存的时间,单位是秒 --><!-- 默认的是-1,表示永久保存 --><property><name>yarn.log-aggregation.retain-seconds</name><value>604800</value></property><property><name>yarn.log.server.url</name><value>http://node1:19888/jobhistory/logs</value></property>

YARN 的任务提交流程

在这里插入图片描述

  1. MapReduce 程序运行 Job 任务,创建出一个 JobCommiter,再由 JobCommiter 进行任务提交等工作。

  2. JobCommiter 会将自己要执行的任务提交给 ResourceManager,申请一个应用ID

  3. 若资源足够,ResourceManager 会分配给 MapReduce 一个应用ID,这个时候,Mapreduce 会将自己的程序上传到 HDFS,再由需要程序的节点下载对应的程序来进行运算

  4. JobCommitter 正式向 ResourceManager 提交作业任务,

  5. ResourceManager 会找到一个负载较小的 NodeManager,指定其完成这个任务

  6. 这个被指定的 NodeManager 会创建一个 Container,并创建一个 AppMaster 用来监控这个任务并调度资源(这个 AppMaster 会从 HDFS 上接收对应的信息(分片信息、任务程序)对应每一个分片都对应一个 MapTask)

  7. 在明确了需要的空间之后,这个 AppMaster 会向 ResourceManager 申请资源,ResourceManager 会根据 NodeManager 上的负载情况为其分配对应的 NodeManager

  8. 对应的 Node Manager 会向 HDFS 上下载对应的程序,进行真正的任务计算,并在执行的时候向 APPMaster 进行汇报,例如在成功的时候向 appMaster 进行报告。

YARN 的命令

查看当前在 yarn 中运行的任务:

yarn top

测试一下执行:

hadoop jar /export/server/hadoop-3.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar pi 10 10

使用 yarn application 可以查看运行的任务信息

yarn application -list -appStates ALL		# 查看所有任务信息
yarn application -list -appStates FINISHED / RUNNING		# 查看所有已完成的 / 正在运行的

我们也可以根据查看出来的 APPID 直接杀死进程:

yarn application -kill xxxxxxxxxxx

被杀死的任务会被标记为 KILLED,我们可以使用 yarn application -list -appStates KILLED 来进行查看

YARN 调度器

先进先出调度器

如题,先来的先处理,存在饥饿问题哪怕你只需要一毫秒的运行也需要一直等

容量调度器

会开辟两个空间,其中 80% 的资源会用来像 FIFO 一样进行处理,另有 20% 等待处理其他问题,这样就在一定程度上规避了小型任务饥饿问题,但其存在资源浪费问题,因为可能有 20% 的资源始终没有使用

公平调度器

公平调度器会为每个任务分配相同的资源,当有任务执行结束时,其会将其所占有的资源分配给其他任务

YARN 的队列

YARN 默认使用的是 只有一个队列的容量调度器,其实也就是 FIFO,但这里我们可以进行配置,一般情况下,会创建两个队列,一个用来处理主任务,另一个用来处理小任务

这里需要修改配置文件:

修改 etc/hadoop 中的 capacity-scheduler.xml

<!--Licensed under the Apache License, Version 2.0 (the "License");you may not use this file except in compliance with the License.You may obtain a copy of the License athttp://www.apache.org/licenses/LICENSE-2.0Unless required by applicable law or agreed to in writing, softwaredistributed under the License is distributed on an "AS IS" BASIS,WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.See the License for the specific language governing permissions andlimitations under the License. See accompanying LICENSE file.
-->
<configuration><!-- yarn 允许的提交任务的最大数量 --><property><name>yarn.scheduler.capacity.maximum-applications</name><value>10000</value><description>Maximum number of applications that can be pending and running.</description></property><!-- Application Master 允许占集群的资源比例,0.1 代表 10% --><property><name>yarn.scheduler.capacity.maximum-am-resource-percent</name><value>0.1</value><description>Maximum percent of resources in the cluster which can be used to run application masters i.e. controls number of concurrent runningapplications.</description></property><!-- 队列类型 --><property><name>yarn.scheduler.capacity.resource-calculator</name><value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value><description>The ResourceCalculator implementation to be used to compare Resources in the scheduler.The default i.e. DefaultResourceCalculator only uses Memory whileDominantResourceCalculator uses dominant-resource to compare multi-dimensional resources such as Memory, CPU etc.</description></property><!-- 默认只有一个 default 队列,这里再添加一个 small 队列来处理小任务 --><property><name>yarn.scheduler.capacity.root.queues</name><value>default,small</value><description>The queues at the this level (root is the root queue).</description></property><!-- 这里是每个队列占用的资源百分比 --><property><name>yarn.scheduler.capacity.root.default.capacity</name><value>70</value><description>Default queue target capacity.</description></property><property><name>yarn.scheduler.capacity.root.small.capacity</name><value>30</value><description>Default queue target capacity.</description></property><!-- 用户可以占用的资源的比例 --><property><name>yarn.scheduler.capacity.root.default.user-limit-factor</name><value>1</value><description>Default queue user limit a percentage from 0.0 to 1.0.</description></property><property><name>yarn.scheduler.capacity.root.small.user-limit-factor</name><value>1</value><description>Default queue user limit a percentage from 0.0 to 1.0.</description></property><!-- 每个队列最多占用整体资源的比例 --><property><name>yarn.scheduler.capacity.root.default.maximum-capacity</name><value>100</value><description>The maximum capacity of the default queue. </description></property><property><name>yarn.scheduler.capacity.root.small.maximum-capacity</name><value>100</value><description>The maximum capacity of the default queue. </description></property><!-- 队列的状态 RUNNING 表示该队列是启用的状态 --><property><name>yarn.scheduler.capacity.root.default.state</name><value>RUNNING</value><description>The state of the default queue. State can be one of RUNNING or STOPPED.</description></property><property><name>yarn.scheduler.capacity.root.small.state</name><value>RUNNING</value><description>The state of the default queue. State can be one of RUNNING or STOPPED.</description></property><!-- 权限管理 允许哪些用户向队列中提交任务 --><property><name>yarn.scheduler.capacity.root.default.acl_submit_applications</name><value>*</value><description>The ACL of who can submit jobs to the default queue.</description></property><property><name>yarn.scheduler.capacity.root.small.acl_submit_applications</name><value>*</value><description>The ACL of who can submit jobs to the default queue.</description></property><property><name>yarn.scheduler.capacity.root.default.acl_administer_queue</name><value>*</value><description>The ACL of who can administer jobs on the default queue.</description></property><property><name>yarn.scheduler.capacity.root.small.acl_administer_queue</name><value>*</value><description>The ACL of who can administer jobs on the default queue.</description></property><property><name>yarn.scheduler.capacity.root.default.acl_application_max_priority</name><value>*</value><description>The ACL of who can submit applications with configured priority.For e.g, [user={name} group={name} max_priority={priority} default_priority={priority}]</description></property><property><name>yarn.scheduler.capacity.root.small.acl_application_max_priority</name><value>*</value><description>The ACL of who can submit applications with configured priority.For e.g, [user={name} group={name} max_priority={priority} default_priority={priority}]</description></property><property><name>yarn.scheduler.capacity.root.default.maximum-application-lifetime</name><value>-1</value><description>Maximum lifetime of an application which is submitted to a queuein seconds. Any value less than or equal to zero will be considered asdisabled.This will be a hard time limit for all applications in thisqueue. If positive value is configured then any application submittedto this queue will be killed after exceeds the configured lifetime.User can also specify lifetime per application basis inapplication submission context. But user lifetime will beoverridden if it exceeds queue maximum lifetime. It is point-in-timeconfiguration.Note : Configuring too low value will result in killing applicationsooner. This feature is applicable only for leaf queue.</description></property><property><name>yarn.scheduler.capacity.root.small.maximum-application-lifetime</name><value>-1</value><description>Maximum lifetime of an application which is submitted to a queuein seconds. Any value less than or equal to zero will be considered asdisabled.This will be a hard time limit for all applications in thisqueue. If positive value is configured then any application submittedto this queue will be killed after exceeds the configured lifetime.User can also specify lifetime per application basis inapplication submission context. But user lifetime will beoverridden if it exceeds queue maximum lifetime. It is point-in-timeconfiguration.Note : Configuring too low value will result in killing applicationsooner. This feature is applicable only for leaf queue.</description></property><property><name>yarn.scheduler.capacity.root.default.default-application-lifetime</name><value>-1</value><description>Default lifetime of an application which is submitted to a queuein seconds. Any value less than or equal to zero will be considered asdisabled.If the user has not submitted application with lifetime value then thisvalue will be taken. It is point-in-time configuration.Note : Default lifetime can't exceed maximum lifetime. This feature isapplicable only for leaf queue.</description></property><property><name>yarn.scheduler.capacity.root.small.default-application-lifetime</name><value>-1</value><description>Default lifetime of an application which is submitted to a queuein seconds. Any value less than or equal to zero will be considered asdisabled.If the user has not submitted application with lifetime value then thisvalue will be taken. It is point-in-time configuration.Note : Default lifetime can't exceed maximum lifetime. This feature isapplicable only for leaf queue.</description></property><property><name>yarn.scheduler.capacity.node-locality-delay</name><value>40</value><description>Number of missed scheduling opportunities after which the CapacityScheduler attempts to schedule rack-local containers.When setting this parameter, the size of the cluster should be taken into account.We use 40 as the default value, which is approximately the number of nodes in one rack.Note, if this value is -1, the locality constraint in the container requestwill be ignored, which disables the delay scheduling.</description></property><property><name>yarn.scheduler.capacity.rack-locality-additional-delay</name><value>-1</value><description>Number of additional missed scheduling opportunities over the node-locality-delayones, after which the CapacityScheduler attempts to schedule off-switch containers,instead of rack-local ones.Example: with node-locality-delay=40 and rack-locality-delay=20, the scheduler willattempt rack-local assignments after 40 missed opportunities, and off-switch assignmentsafter 40+20=60 missed opportunities.When setting this parameter, the size of the cluster should be taken into account.We use -1 as the default value, which disables this feature. In this case, the numberof missed opportunities for assigning off-switch containers is calculated based onthe number of containers and unique locations specified in the resource request,as well as the size of the cluster.</description></property><property><name>yarn.scheduler.capacity.queue-mappings</name><value></value><description>A list of mappings that will be used to assign jobs to queuesThe syntax for this list is [u|g]:[name]:[queue_name][,next mapping]*Typically this list will be used to map users to queues,for example, u:%user:%user maps all users to queues with the same nameas the user.</description></property><property><name>yarn.scheduler.capacity.queue-mappings-override.enable</name><value>false</value><description>If a queue mapping is present, will it override the value specifiedby the user? This can be used by administrators to place jobs in queuesthat are different than the one specified by the user.The default is false.</description></property><property><name>yarn.scheduler.capacity.per-node-heartbeat.maximum-offswitch-assignments</name><value>1</value><description>Controls the number of OFF_SWITCH assignments allowedduring a node's heartbeat. Increasing this value can improvescheduling rate for OFF_SWITCH containers. Lower values reduce"clumping" of applications on particular nodes. The default is 1.Legal values are 1-MAX_INT. This config is refreshable.</description></property><property><name>yarn.scheduler.capacity.application.fail-fast</name><value>false</value><description>Whether RM should fail during recovery if previous applications'queue is no longer valid.</description></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings</name><value></value><description>A list of mappings that will be used to override application priority.The syntax for this list is[workflowId]:[full_queue_name]:[priority][,next mapping]*where an application submitted (or mapped to) queue "full_queue_name"and workflowId "workflowId" (as specified in application submissioncontext) will be given priority "priority".</description></property><property><name>yarn.scheduler.capacity.workflow-priority-mappings-override.enable</name><value>false</value><description>If a priority mapping is present, will it override the value specifiedby the user? This can be used by administrators to give applications apriority that is different than the one specified by the user.The default is false.</description></property></configuration>

若我们在提交任务时不指定队列,默认会被提交到 default 队列里,另外我们也可以指定我们将队列提交到哪里:

# 默认:
hadoop jar /export/server/hadoop-3.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar pi 10 10# 指定队列:
hadoop jar /export/server/hadoop-3.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar wordcount -Dmapreduce.job.queuename=small /input /output3

另外,如果我们希望修改默认提交到的队列,需要在 mapred-site.xml 文件中添加如下配置:

<property><name>mapreduce.job.queuename</name><value>small</value>
</property>

相关文章:

【大数据】五、yarn基础

Yarn Yarn 是用来做分布式系统中的资源协调技术 MapReduce 1.x 对于 MapReduce 1.x 的版本上&#xff1a; 由 Client 发起计算请求&#xff0c;Job Tracker 接收请求之后分发给各个TaskTrack进行执行 在这个阶段&#xff0c;资源的管理与请求的计算是集成在 mapreduce 上的…...

语义分割实战项目(从原理到代码环境配置)

语义分割&#xff08;Semantic Segmentation&#xff09; 先看结果&#xff1a; 是计算机视觉和深度学习领域的一项核心任务&#xff0c;它主要致力于对图像中的每一个像素进行分类&#xff0c;赋予每个像素一个类别标签&#xff0c;以达到理解图像内容的目的。换句话说&#…...

基于python+vue 的一加剧场管理系统的设计与实现flask-django-nodejs-php

二十一世纪我们的社会进入了信息时代&#xff0c;信息管理系统的建立&#xff0c;大大提高了人们信息化水平。传统的管理方式对时间、地点的限制太多&#xff0c;而在线管理系统刚好能满足这些需求&#xff0c;在线管理系统突破了传统管理方式的局限性。于是本文针对这一需求设…...

【Entity Framework】 EF中DbContext类详解

【Entity Framework】 EF中DbContext类详解 一、概述 DbContext类是实体框架的重要组成部分。它是应用域或实例类与数据库交互的桥梁。 从上图可以看出DbContext是负责与数据交互作为对象的主要类。DbContext负责以下活动&#xff1a; EntitySet&#xff1a;DbContext包含…...

智能风扇的新篇章:唯创知音WTK6900G语音识别芯片引领行业革新

随着科技浪潮的推进&#xff0c;智能化技术逐渐渗透到生活的每一个角落&#xff0c;家电领域尤为明显。风扇&#xff0c;这一夏日清凉神器&#xff0c;也通过智能化改造&#xff0c;焕发出前所未有的光彩。其中&#xff0c;智能语音控制功能的加入&#xff0c;为风扇的使用带来…...

[json.exception.type_error.316] invalid UTF-8 byte报错

[json.exception.type_error.316] invalid UTF-8 byte at index 1: 解决方法重新编译程序即可。...

深度强化学习(九)(改进策略梯度)

深度强化学习&#xff08;九&#xff09;&#xff08;改进策略梯度&#xff09; 一.带基线的策略梯度方法 Theorem: 设 b b b 是任意的函数, b b b与 A A A无关。把 b b b 作为动作价值函数 Q π ( S , A ) Q_\pi(S, A) Qπ​(S,A) 的基线, 对策略梯度没有影响: ∇ θ J …...

Oracle修改Number类型精度报错:ORA-01440

修改Number类型的字段的精度SQL ALTER TABLE XXXX MODIFY RATE NUMBER(30,6); 如果表已经存在数据&#xff0c;报错信息如下&#xff1a; ORA-01440: column to be modified must be empty to decrease precision or scale 废话不多说&#xff0c;解决方案如下&#xff1a;…...

美团到店-后端开发一面

1. 介绍一下spring的两大核心思想 2. 介绍一下java的代理&#xff0c;以及动态代理和静态代理的区别 3. spring动态代理是如何生成的&#xff0c;jdk动态代理和cglib的区别 4. 介绍一下synchronized关键字、以及synchronized锁和lock的区别 5. 讲一下java中synchronized的锁升级…...

面试算法-77-括号生成

题目 数字 n 代表生成括号的对数&#xff0c;请你设计一个函数&#xff0c;用于能够生成所有可能的并且 有效的 括号组合。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”] 解 class Solution {publ…...

webpack5零基础入门-12搭建开发服务器

1.目的 每次写完代码都需要手动输入指令才能编译代码&#xff0c;太麻烦了&#xff0c;我们希望一切自动化 2.安装相关包 npm install --save-dev webpack-dev-server 3.添加配置 在webpack.config.js中添加devServer相关配置 /**开发服务器 */devServer: {host: localhos…...

opengl日记10-opengl使用多个纹理示例

文章目录 环境代码CMakeLists.txt文件内容不变。fragmentShaderSource.fsvertexShaderSource.vsmain.cpp 总结 环境 系统&#xff1a;ubuntu20.04opengl版本&#xff1a;4.6glfw版本&#xff1a;3.3glad版本&#xff1a;4.6cmake版本&#xff1a;3.16.3gcc版本&#xff1a;10.…...

锂电池寿命预测 | Matlab基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 锂电池寿命预测 | Matlab基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测 基于蚁狮优化和支持向量回归的锂离子电池剩余寿命预测: 1、提取NASA数据集的电池容量&#xff0c;以历史容量作为输入&#xff0c;…...

动态规划15 | ● 392.判断子序列 ● *115.不同的子序列

392.判断子序列 https://programmercarl.com/0392.%E5%88%A4%E6%96%AD%E5%AD%90%E5%BA%8F%E5%88%97.html 考点 子序列问题 我的思路 dp[i][j]的含义是&#xff0c;两个序列分别取到下标为i和j的时候&#xff0c;他们是否满足前者是后者的子序列&#xff0c;满足为True&#x…...

APP UI自动化测试思路总结

首先想要说明一下&#xff0c;APP自动化测试可能很多公司不用&#xff0c;但也是大部分自动化测试工程师、高级测试工程师岗位招聘信息上要求的&#xff0c;所以为了更好的待遇&#xff0c;我们还是需要花时间去掌握的&#xff0c;毕竟谁也不会跟钱过不去。 接下来&#xff0c…...

Codeforces Round 936 (Div. 2)

C. Tree Cutting 题意&#xff1a;给定一棵树&#xff0c;需要删除 k 条边&#xff0c;使得 k1 个联通块中的最小结点数最大。求出这个最大值 思路&#xff1a;求最小值最大--想到二分答案--然后深搜满足条件的连通块是否大于k即可 #include<iostream> #include<al…...

yolov6实现遥感影像目标识别|以DIOR数据集为例

1 目标检测是计算机视觉领域中的一项重要任务&#xff0c;它的目标是在图像或视频中检测出物体的位置和类别。YOLO&#xff08;You Only Look Once&#xff09;是一系列经典的目标检测算法&#xff0c;最初由Joseph Redmon等人于2016年提出。YOLO算法具有快速、简单、端到端的特…...

stable-diffusion-electron-clickstart 支持windows AMD显卡

前言 使用vue3 vite electron element-plus构建&#xff0c;正好学习下electrongithub stable-diffusion “画境导航者” 启动器 简介 stable-diffusion “画境导航者” 启动器支持功能 一键启动打开文件夹&#xff08;tmp、txt2img-images&#xff09;等模型所在文件夹&…...

ES进程除了kill之外,有什么优雅关闭的方式吗?

问题 Linux环境中&#xff0c;Elasticsearch 8的进程除了kill之外&#xff0c;有什么优雅关闭的方式吗&#xff1f; 具体实施方式 在Linux环境中&#xff0c;Elasticsearch&#xff08;ES&#xff09;进程可以通过多种方式实现优雅关闭&#xff0c;这种方式允许它完成必要的…...

院子摄像头的监控

院子摄像头的监控和禁止区域入侵检测相比&#xff0c;多了2个功能&#xff1a;1&#xff09;如果检测到有人入侵&#xff0c;则把截图保存起来&#xff0c;2&#xff09;如果检测到有人入侵&#xff0c;则向数据库插入一条事件数据。 打开checkingfence.py&#xff0c;添加如下…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...

Linux中INADDR_ANY详解

在Linux网络编程中&#xff0c;INADDR_ANY 是一个特殊的IPv4地址常量&#xff08;定义在 <netinet/in.h> 头文件中&#xff09;&#xff0c;用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法&#xff0c;允许套接字监听所有本地IP地址上的连接请求。 关…...

02-性能方案设计

需求分析与测试设计 根据具体的性能测试需求&#xff0c;确定测试类型&#xff0c;以及压测的模块(web/mysql/redis/系统整体)前期要与相关人员充分沟通&#xff0c;初步确定压测方案及具体的性能指标QA完成性能测试设计后&#xff0c;需产出测试方案文档发送邮件到项目组&…...

MCP和Function Calling

MCP MCP&#xff08;Model Context Protocol&#xff0c;模型上下文协议&#xff09; &#xff0c;2024年11月底&#xff0c;由 Anthropic 推出的一种开放标准&#xff0c;旨在统一大模型与外部数据源和工具之间的通信协议。MCP 的主要目的在于解决当前 AI 模型因数据孤岛限制而…...

SE(Secure Element)加密芯片与MCU协同工作的典型流程

以下是SE&#xff08;Secure Element&#xff09;加密芯片与MCU协同工作的典型流程&#xff0c;综合安全认证、数据保护及防篡改机制&#xff1a; 一、基础认证流程&#xff08;参数保护方案&#xff09; 密钥预置‌ SE芯片与MCU分别预置相同的3DES密钥&#xff08;Key1、Key2…...