当前位置: 首页 > news >正文

深度学习Top10算法之深度神经网络DNN

深度神经网络(Deep Neural Networks,DNN)是人工神经网络(Artificial Neural Networks,ANN)的一种扩展。它们通过模仿人脑的工作原理来处理数据和创建模式,广泛应用于图像识别、语音识别、自然语言处理等领域。

一、背景

早期发展(1940s-1980s)

1940年代初期:神经网络的最初概念源于Warren McCulloch和Walter Pitts的工作。他们提出了一种简化的大脑神经元模型,并展示了其计算潜力。
1958年:Frank Rosenblatt发明了感知机(Perceptron),这是一种二进制输出的简单神经网络,可执行简单的分类任务。
1969年:Marvin Minsky和Seymour Papert出版了《Perceptrons》,指出了感知机的局限性,尤其是它不能解决线性不可分问题(如异或问题)。这导致了第一次AI冬天。

BP算法(1980s)

1980年代初期:多层神经网络和反向传播算法(Backpropagation,BP)的发展标志着神经网络研究的复兴。特别是,1986年,David Rumelhart、Geoffrey Hinton和Ronald Williams发表了一篇关键论文,详细描述了BP算法。这种算法能够有效地训练多层网络,并解决了感知机面临的某些限制。

深度学习的崛起(2000s-2010s)

2006年:Geoffrey Hinton和他的学生在一篇论文中重新引入了深度神经网络的概念,提出了一种新的无监督预训练方法。这标志着深度学习时代的开始。
2012年:Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton发布了AlexNet的论文。这个模型在ImageNet竞赛中大获全胜,展示了深度学习在视觉识别任务中的巨大潜力。
随后几年:深度学习在各个领域迅速崛起,特别是在计算机视觉、自然语言处理等领域。诸如卷积神经网络(CNN)、循环神经网络(RNN)以及长短期记忆网络(LSTM)等架构的发展,进一步推动了这一领域的发展。

二、原理介绍

深度神经网络的原理

深度神经网络(DNN)的基本构成包括输入层、若干隐藏层和输出层。每个层由多个神经元(或称为节点)组成,这些神经元通过带权重的连接相互作用。下面是DNN的基本数学原理和公式:

1. 神经元模型

每个神经元接收来自前一层神经元的输入,计算加权和,并应用一个激活函数。一个神经元的输出可以表示为:

y = f ( ∑ i = 1 n w i x i + b ) y = f\left(\sum_{i=1}^{n} w_i x_i + b\right) y=f(i=1nwixi+b)

其中:

  • x i x_i xi 是输入值,
  • w i w_i wi 是对应的权重,
  • b b b 是偏置项,
  • f f f 是激活函数(如ReLU、Sigmoid等)。
2. 前向传播

在前向传播过程中,数据从输入层经过每一隐藏层直到输出层。每一层的输出都是下一层的输入。

3. 激活函数

激活函数是用来引入非线性因素的,使得网络能够学习和执行更复杂的任务。常用的激活函数包括:

  • ReLU: f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
  • Sigmoid: f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
  • Tanh: f ( x ) = tanh ⁡ ( x ) f(x) = \tanh(x) f(x)=tanh(x)
4. 损失函数

损失函数(Loss Function)用于评估模型的预测值与真实值之间的差距。常见的损失函数包括均方误差(MSE)用于回归任务,交叉熵(Cross-Entropy)用于分类任务。

5. 反向传播与梯度下降

反向传播算法用于计算每个权重对于总损失的影响。基于这个影响,通过梯度下降算法更新权重,以减小损失函数的值。权重更新公式为:

w = w − η ⋅ ∂ L ∂ w w = w - \eta \cdot \frac{\partial L}{\partial w} w=wηwL

其中:

  • w w w 是权重,
  • η \eta η 是学习率,
  • ∂ L ∂ w \frac{\partial L}{\partial w} wL 是损失函数相对于权重的梯度。
6. 优化器

优化器是用来更新网络的权重以减小损失函数值的算法。常见的优化器包括随机梯度下降(SGD)、Adam等。

通过这些步骤,DNN能够从数据中学习复杂的模式和关系,适用于广泛的预测和分类任务。
在这里插入图片描述

三、项目具体案例:基于DNN的衣服分类

数据集

我们将使用著名的Fashion MNIST数据集,它包含了70000张灰度图像,分为10个类别,每个类别有7000张图像。图像的尺寸为28x28像素。

实现步骤

1.导入所需库:首先导入TensorFlow和其他必要的Python库。
2.加载和预处理数据:加载Fashion MNIST数据集,并进行适当的预处理。
3.定义模型:构建一个深度神经网络模型。
4.编译模型:定义损失函数、优化器和评估指标。
5.训练模型:使用训练数据训练模型。
6.评估模型:使用测试数据评估模型的性能。
7.模型预测:对新图像进行预测分类。

示例代码

以下是用于上述任务的Python代码示例。请注意,这是一个简化的示例,实际应用可能需要更详细的调参和优化。

import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam# 加载数据集
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0# 构建模型
model = Sequential([Flatten(input_shape=(28, 28)),Dense(128, activation='relu'),Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer=Adam(),loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=10)# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)# 使用模型进行预测
predictions = model.predict(test_images)

这段代码首先导入了必要的库,然后加载Fashion MNIST数据集,并对其进行简单的归一化处理。之后,我们构建了一个简单的神经网络模型,包括一个输入层(通过Flatten层实现),两个Dense层作为隐藏层和输出层。接着,我们编译并训练了模型,并在测试集上评估了其性能。最后,我们使用训练好的模型对新图像进行预测。

四、优势与不足

深度神经网络(DNN)是当今人工智能和机器学习领域中最为突出的技术之一,其应用广泛,影响深远。然而,正如任何技术一样,DNN在拥有显著优势的同时,也存在一些不可忽视的不足。以下是对深度神经网络优势与不足的详细分析:

DNN的优势

  1. 强大的数据表示能力
    DNN通过学习大量数据中的复杂模式,能够自动提取和构建有效的数据表示。与传统的机器学习方法相比,DNN不需要人工设计特征,而是可以从原始数据中直接学习到深层次的特征表示。

  2. 多层次的特征学习
    在DNN中,每个隐藏层都可以看作是在进行一种特征的转换和抽象。较低层可能学习到数据的基本元素(如边缘或颜色),而更高层则能够识别更复杂的模式(如物体或人脸)。这种分层学习使得DNN在处理复杂问题时更加高效。

  3. 灵活性和通用性
    DNN的架构设计非常灵活,可以通过改变层数、神经元数目、激活函数等来调整网络结构,从而适应不同类型的数据和任务,如图像识别、语音识别和自然语言处理等。

  4. 大数据驱动
    随着大数据时代的到来,DNN能够利用其强大的数据处理能力,在海量数据中进行学习,这使得其性能随着数据量的增加而提高。

  5. 不断的技术进步
    DNN领域不断有新的研究和技术进展,比如各种新型神经网络架构(如卷积神经网络CNN、循环神经网络RNN)和优化算法,这些进步持续推动着DNN在各个领域的应用。

DNN的不足

  1. 对数据和计算资源的高需求
    DNN通常需要大量的训练数据来实现有效的学习,这在某些情况下可能难以满足。此外,DNN的训练和推理过程计算量大,对硬件资源(如GPU)的需求高。

  2. 过拟合的风险
    在数据量有限或者模型过于复杂的情况下,DNN容易发生过拟合,即模型在训练数据上表现良好,但在新数据上性能下降。

  3. 可解释性问题
    DNN的决策过程往往被视为一个“黑盒”,其内部是如何处理数据和做出决策的,往往缺乏直观的解释。这在需要决策透明度的应用中,如医疗诊断,成为一个重要问题。

  4. 长期依赖问题
    在某些类型的DNN(尤其是RNN)中,模型可能难以学习输入序列中的长期依赖关系。虽然有如LSTM这样的结构来解决这个问题,但它们仍然有其局限性。

  5. 对噪声和对抗样本的脆弱性
    DNN在面对包含噪声的数据或者特意设计的对抗样本时,其性能的稳定性和鲁棒性可能会显著降低。这种脆弱性在安全敏感的应用中尤为重要,如自动驾驶汽车和欺诈检测系统。

  6. 调参难度大
    虽然DNN提供了极大的灵活性,但这也意味着需要调整大量的超参数,如学习率、层数、神经元数量等。合适的参数选择对于模型的性能至关重要,而找到最优参数组合往往需要大量的实验和经验。

  7. 非平稳和动态环境下的挑战
    DNN通常在静态数据集上训练得到最佳性能。然而,在实际应用中,数据可能是非平稳的(即数据分布随时间变化),这需要模型具有动态适应能力,而传统DNN在这方面可能存在不足。

  8. 训练和调试的复杂性
    DNN的训练过程可能非常复杂和时间消耗巨大。此外,当模型表现不佳时,确定问题所在并不总是直观的,这可能导致调试过程费时费力。

  9. 能源效率
    DNN的训练和推理过程通常需要大量计算资源,这导致较高的能源消耗。在可持续性和环境影响日益受到重视的背景下,这一点成为一个重要考量。

  10. 泛化能力的限制
    虽然DNN在训练集上的表现可能很好,但它们在面对与训练数据显著不同的新数据时,泛化能力可能有限。这表明DNN可能在学习数据分布的特定方面,而不是获取到真正通用的知识。

相关文章:

深度学习Top10算法之深度神经网络DNN

深度神经网络(Deep Neural Networks,DNN)是人工神经网络(Artificial Neural Networks,ANN)的一种扩展。它们通过模仿人脑的工作原理来处理数据和创建模式,广泛应用于图像识别、语音识别、自然语…...

【智能算法】海马优化算法(SHO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年,Zhao等人受到海马自然社会行为启发,提出了海马优化算法(Sea-horse Optimizer, SHO)。 2.算法原理 2.1算法思想 SHO模拟了海马群在自然界中的…...

AI大模型学习的伦理与社会影响

AI大模型学习 随着人工智能技术的快速发展,AI大模型学习成为当前热门研究领域之一。AI大模型学习是指基于大规模数据集和深度学习模型进行训练,以实现更高的准确性和复杂性。这些大模型已经在几乎所有领域都取得了显著的成就,包括自然语言处…...

记录些LangChain相关的知识

RAG的输出准确率 RAG的输出准确率 向量信息保留率 * 语义搜索准确率 * LLM准确率RAG的输出准确率由三个因素共同决定:向量信息保留率、语义搜索准确率以及LLM准确率。这三个因素是依次作用的,因此准确率实际上是它们的乘积。这意味着,任何一…...

C语言例4-7:格式字符f的使用例子

%f&#xff0c;实型&#xff0c;小数部分为6位 代码如下&#xff1a; //格式字符f的使用例子 #include<stdio.h> int main(void) {float f 123.456;double d1, d2;d11111111111111.111111111;d22222222222222.222222222;printf("%f,%12f,%12.2f,%-12.2f,%.2f\n&qu…...

[蓝桥杯 2019 省 A] 修改数组

题目链接 [蓝桥杯 2019 省 A] 修改数组 题目描述 给定一个长度为 N N N 的数组 A [ A 1 , A 2 , A 3 , . . . , A N ] A [A_1, A_2, A_3, ...,A_N] A[A1​,A2​,A3​,...,AN​]&#xff0c;数组中有可能有重复出现的整数。 现在小明要按以下方法将其修改为没有重复整数的…...

Git基础(25):Cherry Pick合并指定commit id的提交

文章目录 前言指定commit id合并使用TortoiseGit执行cherry-pick命令 前言 开发中&#xff0c;我们会存在多个分支开发的情况&#xff0c;比如dev&#xff0c;test, prod分支&#xff0c;dev分支在开发新功能&#xff0c;prod作为生产分支已发布。如果某个时候&#xff0c;我们…...

C语言结构体之位段

位段&#xff08;节约内存&#xff09;&#xff0c;和王者段位联想记忆 位段是为了节约内存的。刚好和结构体相反。 那么什么是位段呢&#xff1f;我们现引入情景&#xff1a;我么如果要记录一个人是男是女&#xff0c;用数字0 1表示。我们发现只要一个bit内存就可以完成我们想…...

2016年认证杯SPSSPRO杯数学建模D题(第二阶段)NBA是否有必要设立四分线全过程文档及程序

2016年认证杯SPSSPRO杯数学建模 D题 NBA是否有必要设立四分线 原题再现&#xff1a; NBA 联盟从 1946 年成立到今天&#xff0c;一路上经历过无数次规则上的变迁。有顺应民意、皆大欢喜的&#xff0c;比如 1973 年在技术统计中增加了抢断和盖帽数据&#xff1b;有应运而生、力…...

登录校验解决方案JWT

目录 &#x1f397;️1.JWT介绍 &#x1f39e;️2.应用场景 &#x1f39f;️3.结构组成 &#x1f3ab;4.JWT优点 &#x1f3a0;5.封装成通用方法 &#x1f6dd;6.JWT自动刷新 1.JWT介绍 官网&#xff1a;JWT官网 JSON Web Token (JWT) 是一个开放标准&#xff0c;它…...

Flutter开发进阶之瞧瞧BuildOwner

Flutter开发进阶之瞧瞧BuildOwner 上回说到关于Element Tree的构建还缺最后一块拼图&#xff0c;build的重要过程中会调用_element!.markNeedsBuild();&#xff0c;而markNeedsBuild会调用owner!.scheduleBuildFor(this);。 在Flutter框架中&#xff0c;BuildOwner负责管理构建…...

大量免费工具使用(提供api接口)

标题: 免费工具集使用 - 简化你的任务 介绍&#xff1a; 在数字化时代&#xff0c;我们经常需要使用各种工具来完成各种任务。本文将介绍一个免费工具集&#xff0c;它提供了多种实用工具&#xff0c;帮助简化你的任务。这些工具可以在网站 https://tool.kertennet.com 上找到…...

网络探测工具Nmap介绍

1. Nmap简介 Nmap是一款用于网络发现和安全审计的网络安全工具。可用于列举网络主机清单、管理服务升级调度、监控主机、监控主机服务运行状况、检测目标主机是否在线和端口开放情况、侦测运行的服务类型及版本信息、侦测操作系统与设备类型等。 2. 命令大纲 3. 命令详细介绍…...

20240319-2-机器学习基础面试题

⽼板给了你⼀个关于癌症检测的数据集&#xff0c;你构建了⼆分类器然后计算了准确率为 98%&#xff0c; 你是否对这个模型很满意&#xff1f;为什么&#xff1f;如果还不算理想&#xff0c;接下来该怎么做&#xff1f; 首先模型主要是找出患有癌症的患者&#xff0c;模型关注的…...

0202矩阵的运算-矩阵及其运算-线性代数

文章目录 一、矩阵的加法二、数与矩阵相乘三、矩阵与矩阵相乘四、矩阵的转置五、方阵的行列式结语 一、矩阵的加法 定义2 设有两个 m n m\times n mn橘子 A ( a i j ) 和 B ( b i j ) A(a_{ij})和B(b_{ij}) A(aij​)和B(bij​),那么矩阵A与B的和记为AB,规定为 A B ( a 11…...

python中的__dict__

类的__dict__返回的是&#xff1a;类的静态函数、类函数、普通函数、全局变量以及一些内置的属性都是放在类的__dict__里的&#xff0c; 而实例化对象的&#xff1a;__dict__中存储了一些类中__init__的一些属性值。 import的py文件 __dict__返回的是&#xff1a;__init__的…...

数学分析复习:无穷乘积

文章目录 无穷乘积定义&#xff1a;无穷乘积的收敛性命题&#xff1a;无穷乘积的Cauchy收敛准则正项级数和无穷乘积的联系 本篇文章适合个人复习翻阅&#xff0c;不建议新手入门使用 无穷乘积 设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an​}n≥1​&#xff0c;设对任意 …...

02 React 组件使用

import React, { useState } from react;// 定义一个简单的函数式组件 function Counter() {// 使用 useState hook 来创建一个状态变量 count&#xff0c;并提供修改该状态的函数 setCountconst [count, setCount] useState(0);// 在点击按钮时增加计数器的值const increment…...

你就是上帝

你就是上帝&#xff1a;Jv程序员&#xff0c;请你站在上帝或神的角度 1.万物皆有裂缝 按照西方文化&#xff08;宗教神话&#xff0c;古希腊、古罗马等&#xff09;&#xff0c;上帝创建了人&#xff1b; 创建人之前&#xff0c;还创建了人的居所或地盘/栖息地&#xff08;伊…...

Spring Cloud: openFegin使用

文章目录 一、OpenFeign简介二、Springboot集成OpenFeign1、引入依赖2、EnableFeignClients注解&#xff08;1&#xff09;应用&#xff08;2&#xff09;属性解析 3、 FeignClient&#xff08;1&#xff09;应用&#xff08;2&#xff09;属性解析&#xff08;3&#xff09;向…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...