当前位置: 首页 > news >正文

Vue 怎么定义插件以及使用这个插件

Vue.js插件是一种增强Vue功能的方式,它允许你向Vue中添加全局功能,比如全局方法、指令、过滤器、混入等

创建Vue插件

export default {install(Vue, options) {// 添加全局方法或属性Vue.myGlobalMethod = function() {console.log('全局方法调用', options.message);};// 添加全局指令Vue.directive('my-directive', {bind(el, binding, vnode) {el.textContent = binding.value.toUpperCase();}});// 添加实例方法Vue.prototype.$myMethod = function(methodOptions) {console.log('实例方法调用', methodOptions, this);};}
};

使用Vue插件

一旦创建了插件,你可以通过Vue.use()方法在Vue应用中使用它。通常这一步骤在入口文件(如main.js)中完成。

import Vue from 'vue';
import App from './App.vue';
import MyPlugin from './my-plugin'; // 引入你的插件// 使用插件
Vue.use(MyPlugin, { message: 'Hello from plugin!' });new Vue({render: h => h(App)
}).$mount('#app');

相关文章:

Vue 怎么定义插件以及使用这个插件

Vue.js插件是一种增强Vue功能的方式,它允许你向Vue中添加全局功能,比如全局方法、指令、过滤器、混入等 创建Vue插件 export default {install(Vue, options) {// 添加全局方法或属性Vue.myGlobalMethod function() {console.log(全局方法调用, optio…...

SQL2017附加从其他电脑复制过来的mdf数据后出现【只读】无法写入数据

1. 尝试给它所在的文件夹的属性中的“只读”去勾,无果。 2. 其他文章提示是文件的问题。 该错误为文件权限错误,找到该数据库的 数据库文件 和 日志文件,在安全中添加 Authenticated Users 用户的权限,并设置 “完全控制”...

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型

往期精彩内容: Python-凯斯西储大学(CWRU)轴承数据解读与分类处理 Python轴承故障诊断入门教学-CSDN博客 Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客 Python轴承故障诊断 (14)高创新故障识别模型-CSDN…...

如何运行大模型

简介 要想了解一个模型的效果,对模型进行一些评测,或去评估是否能解决业务问题时,首要任务是如何将模型跑起来。目前有较多方式运行模型,提供client或者http能力。 名词解释 浮点数表示法 一个浮点数通常由三部分组成&#xf…...

基于FPGA实现LED的闪烁——HLS

基于FPGA实现LED的闪烁——HLS 引言: ​ 随着电子技术的飞速发展,硬件设计和开发的速度与效率成为了衡量一个项目成功与否的关键因素。在传统的硬件开发流程中,工程师通常需要使用VHDL或Verilog等硬件描述语言来编写底层的硬件逻辑&#xff0…...

平常心看待已发生的事

本篇主要记录自己在阅读此篇文章(文章链接: 这才是扼杀员工积极性的真正原因(管理者必读) )和这两天京东的东哥“凡是长期业绩不好,从来不拼搏的人,不是我的兄弟”观点后的一些想法。 自己在微…...

docker image分析利器之dive

dive是一个用于研究 Docker 镜像、层内容以及发现缩小 Docker/OCI 镜像大小方法的开源工具. 开源地址: dive github 为了有个直观的印象, 可以先看一下repo文档中的gif图: 安装 在Ubuntu/Debian系统下,可以使用deb包安装: DIVE_VERSION$(curl -sL "https:/…...

java组合设计模式Composite Pattern

组合设计模式(Composite Pattern)是一种结构型设计模式,它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端对单个对象和组合对象的使用具有一致性。 // Component - 图形接口 interface Graphic {void draw()…...

每天五分钟深度学习:如何使用计算图来反向计算参数的导数?

本文重点 在上一个课程中,我们使用一个例子来计算函数J,也就相当于前向传播的过程,本节课程我们将学习如何使用计算图计算函数J的导数。相当于反向传播的过程。 计算J对v的导数,dJ/dv3 计算J对a的导数,dJ/da&#xf…...

常见排序算法之选择排序

目录 一、选择排序 1.1 什么是选择排序? 1.2 思路 1.2.1 思路一 1.2.2 优化思路 1.3 C语言源码 1.3.1 思路一 1.3.2 优化思路 二、堆排序 2.1 调整算法 2.1.2 向上调整算法 2.1.3 向下调整算法 2.2 建堆排序 一、选择排序 1.1 什么是选择排序&#xf…...

Redis 事件机制 - AE 抽象层

Redis 服务器是一个事件驱动程序,它主要处理如下两种事件: 文件事件:利用 I/O 复用机制,监听 Socket 等文件描述符上发生的事件。这类事件主要由客户端(或其他Redis 服务器)发送网络请求触发。时间事件&am…...

Java | Leetcode Java题解之第118题杨辉三角

题目&#xff1a; 题解&#xff1a; class Solution {public List<List<Integer>> generate(int numRows) {List<List<Integer>> ret new ArrayList<List<Integer>>();for (int i 0; i < numRows; i) {List<Integer> row new…...

DNS 解析过程

文章目录 简介特点查询方式⚡️1. 浏览器缓存2. 系统缓存&#xff08;hosts文件&#xff09;3. 路由器缓存4. 本地域名服务器5. 根域名服务器6. 顶级域名服务器7. 权限域名服务器8. 本地域名服务器缓存并返回9. 操作系统缓存并返回10. 浏览器缓存并访问流程图 总结 简介 DNS&a…...

Golang | Leetcode Golang题解之第118题杨辉三角

题目&#xff1a; 题解&#xff1a; func generate(numRows int) [][]int {ans : make([][]int, numRows)for i : range ans {ans[i] make([]int, i1)ans[i][0] 1ans[i][i] 1for j : 1; j < i; j {ans[i][j] ans[i-1][j] ans[i-1][j-1]}}return ans }...

操作系统实验——线程与进程

如果代码或文章中&#xff0c;有什么错误或疑惑&#xff0c;欢迎交流沟通哦~ ## 进程与线程的区别 1. **各自定义**&#xff1a; 进程是操作系统进行资源分配和调度的一个独立单位&#xff0c;具有一定独立功能的程序关于某个数据集合的依次运行活动。 线程被称为轻量级的进程…...

最强端侧多模态模型MiniCPM-V 2.5,8B 参数,性能超越 GPT-4V 和 Gemini Pro

前言 近年来&#xff0c;人工智能领域掀起了一股大模型热潮&#xff0c;然而大模型的巨大参数量级和高昂的算力需求&#xff0c;限制了其在端侧设备上的应用。为了打破这一局限&#xff0c;面壁智能推出了 MiniCPM 模型家族&#xff0c;致力于打造高性能、低参数量的端侧模型。…...

Spring Boot中如何查询PGSQL分表后的数据

数据库用的pgsql&#xff0c;在表数据超过100w条的时候执行定时任务进行了分表&#xff0c;分表后表名命名为原的表名后面拼接时间&#xff0c;如原表名是card_device_trajectory_info&#xff0c;分表后拼接时间后得到card_device_trajectory_info_20240503&#xff0c;然后分…...

如何学习一个新技能

1. 提出想法 2.找到学习方法&#xff0c;学习路径 3.开始学 参考视频&#xff1a;如何成为超速学习者&#xff1f;快速学会任何新技能&#xff01;_哔哩哔哩_bilibili...

sklearn之logistic回归

文章目录 logistic回归logit logistic回归 logistic regression被称之为logistic回归&#xff0c;对于logistic这个单词来说&#xff0c;他本身的翻译其实不太容易&#xff0c;比较有名的译法是对数几率回归&#xff0c;我也认为这种译法是比较合适的&#xff0c;虽然并非logi…...

Warning: Each child in a list should have a unique “key“ prop.

问题描述&#xff1a; 使用ProTable的时候&#xff0c;报错如下 原因分析&#xff1a; 根据报错内容可以分析出&#xff0c;表格数据缺少唯一key&#xff0c; <PaginationTablecolumns{columns}pagination{{pageSize: 10,current: 1,showSizeChanger: true,showQuickJum…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

Android屏幕刷新率与FPS(Frames Per Second) 120hz

Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数&#xff0c;单位是赫兹&#xff08;Hz&#xff09;。 60Hz 屏幕&#xff1a;每秒刷新 60 次&#xff0c;每次刷新间隔约 16.67ms 90Hz 屏幕&#xff1a;每秒刷新 90 次&#xff0c;…...

标注工具核心架构分析——主窗口的图像显示

&#x1f3d7;️ 标注工具核心架构分析 &#x1f4cb; 系统概述 主要有两个核心类&#xff0c;采用经典的 Scene-View 架构模式&#xff1a; &#x1f3af; 核心类结构 1. AnnotationScene (QGraphicsScene子类) 主要负责标注场景的管理和交互 &#x1f527; 关键函数&…...

解密鸿蒙系统的隐私护城河:从权限动态管控到生物数据加密的全链路防护

摘要 本文以健康管理应用为例&#xff0c;展示鸿蒙系统如何通过细粒度权限控制、动态权限授予、数据隔离和加密存储四大核心机制&#xff0c;实现复杂场景下的用户隐私保护。我们将通过完整的权限请求流程和敏感数据处理代码&#xff0c;演示鸿蒙系统如何平衡功能需求与隐私安…...

前端打包工具简单介绍

前端打包工具简单介绍 一、Webpack 架构与插件机制 1. Webpack 架构核心组成 Entry&#xff08;入口&#xff09; 指定应用的起点文件&#xff0c;比如 src/index.js。 Module&#xff08;模块&#xff09; Webpack 把项目当作模块图&#xff0c;模块可以是 JS、CSS、图片等…...