当前位置: 首页 > news >正文

个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度)

用tanh函数画图

圆形

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r = 0.4
center_x, center_y = 0, 0  # 假设圆心在(0, 0)# 计算每个网格点到圆心的距离
distance = np.sqrt((x_i - center_x) ** 2 + (y_i - center_y) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通过设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
u0 = 0.5 * (1 + np.tanh((r - distance) / epsilon))
u0[distance > r] = -1  # 强制圆外的值为-1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

半圆

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r = 0.4
center_x, center_y = 0, -1  # 假设圆心在(0, -1)# 计算每个网格点到圆心的距离
distance = np.sqrt((x_i - center_x) ** 2 + (y_i - center_y) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通过设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
u0 = 0.5 * (1 + np.tanh((r - distance) / epsilon))
u0[distance > r] = -1  # 强制圆外的值为-1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

两个圆形

在这里插入图片描述
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(0, 1, 1000)
yy = np.linspace(0, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 圆的半径和中心
r1 = 0.15  # 如果要分开点,就设为0.14
r2 = 0.15  # 如果要分开点,就设为0.14
center_x1, center_y1 = 0.35, 0.5  # 圆心1
center_x2, center_y2 = 0.65, 0.5  # 圆心2# 计算每个网格点到圆心的距离
distance1 = np.sqrt((x_i - center_x1) ** 2 + (y_i - center_y1) ** 2)
distance2 = np.sqrt((x_i - center_x2) ** 2 + (y_i - center_y2) ** 2)# 使用tanh函数来近似表示半圆区域
# 注意:tanh函数不能直接用于表示半圆,但我们可以通设置阈值来近似表示
epsilon = 0.01 # 控制tanh函数的“陡峭度”
phi1 = np.tanh((r1 - distance1) / (2 * epsilon))
phi2 = np.tanh((r2 - distance2) / (2 * epsilon))u0 = np.maximum(phi1, phi2)
# u0 = 1 * (1 + phi1 + phi2)  # 两种都可以生成两个圆# 分别找出距离两个圆心都大于半径的点的索引
outside_circle1 = distance1 > r1
outside_circle2 = distance2 > r2# 使用逻辑与来找出两个条件都满足的点
outside_both_circles = np.logical_and(outside_circle1, outside_circle2)# 将这些点对应的u0值设置为-1
u0[outside_both_circles] = -1# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Half Circle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

正方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 正方形的中心和边长
center_x, center_y = 0, 0  # 假设正方形中心在(0, 0),为了简化计算
side_length = 0.5  # 正方形边长的一半# 使用tanh函数来近似正方形的四个边界
# 注意:这不是一个完美的正方形,只是一个近似
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 0.5 * (1 + np.tanh((side_length - np.abs(y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 0.5 * (1 + np.tanh((side_length - np.abs(y_i + center_y)) / epsilon))
# 近似左边界
u_left = 0.5 * (1 + np.tanh((side_length - np.abs(x_i - center_x)) / epsilon))
# 近似右边界
u_right = 0.5 * (1 + np.tanh((side_length - np.abs(x_i + center_x)) / epsilon))# 四个边界的交集(即正方形内部)应取得高值
u0 = np.minimum(np.minimum(u_top, u_bottom), np.minimum(u_left, u_right))
u0[u0 < 0.99] = -1  # 强制非正方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制正方形内部的值为1(可调整阈值)# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Square using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

长方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-1, 1, 1000)
yy = np.linspace(-1, 1, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0  # 假设长方形中心在(0, 0)
width = 0.6  # 长方形的宽度
height = 0.4  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 0.5 * (1 + np.tanh((half_height - (y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 0.5 * (1 + np.tanh((half_height - (center_y - y_i)) / epsilon))
# 近似左边界
u_left = 0.5 * (1 + np.tanh((half_width - (x_i - center_x)) / epsilon))
# 近似右边界
u_right = 0.5 * (1 + np.tanh((half_width - (center_x - x_i)) / epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])
u0[u0 < 0.99] = -1  # 强制非长方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制长方形内部的值为1(可调整阈值)# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.show()

边界上的长方形(不带界面过渡)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-0.5, 0.5, 1000)
yy = np.linspace(0, 0.5, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0.0625  # 假设长方形中心在(0, 0)
width = 0.5  # 长方形的宽度(长)
height = 0.125  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = 1 * (1 + np.tanh((half_height - (y_i - center_y)) / epsilon))
# 近似下边界
u_bottom = 1 * (1 + np.tanh((half_height - (center_y - y_i)) / epsilon))
# 近似左边界
u_left = 1 * (1 + np.tanh((half_width - (x_i - center_x)) / epsilon))
# 近似右边界
u_right = 1 * (1 + np.tanh((half_width - (center_x - x_i)) / epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])
u0[u0 < 0.99] = -1  # 强制非长方形内部的值为-1(可调整阈值)
u0[u0 >= 0.99] = 1  # 强制长方形内部的值为1(可调整阈值)# # 绘制结果
# fig, ax = plt.subplots()
# p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
# ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
# fig.colorbar(p, ax=ax, label='u0 Value')
#
# # 设置标题和坐标轴标签
# plt.title('Approximate Rectangle using tanh')
# plt.xlabel('X')
# plt.ylabel('Y')
#
# # 显示图形
# plt.grid()
# plt.show()# 估算角点位置(这里只是估算,不是精确值)
# 左上角
x_left_top, y_left_top = center_x - half_width, center_y + half_height
# 右上角
x_right_top, y_right_top = center_x + half_width, center_y + half_height
# 左下角
x_left_bottom, y_left_bottom = center_x - half_width, center_y - half_height
# 右下角
x_right_bottom, y_right_bottom = center_x + half_width, center_y - half_height# 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示长方形四个角的坐标数字
plt.text(x_left_top, y_left_top, f'({x_left_top:.2f}, {y_left_top:.2f})', va='top', ha='right', color='red')
plt.text(x_right_top, y_right_top, f'({x_right_top:.2f}, {y_right_top:.2f})', va='top', ha='left', color='red')
plt.text(x_left_bottom, y_left_bottom, f'({x_left_bottom:.2f}, {y_left_bottom:.2f})', va='bottom', ha='right', color='red')
plt.text(x_right_bottom, y_right_bottom, f'({x_right_bottom:.2f}, {y_right_bottom:.2f})', va='bottom', ha='left', color='red')# 显示网格和图形
plt.grid()
plt.show()

边界上的长方形(带界面宽度)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt# 创建一个二维网格
xx = np.linspace(-0.5, 0.5, 1000)
yy = np.linspace(0, 0.5, 1000)
x_i, y_i = np.meshgrid(xx, yy)# 长方形的中心和尺寸
center_x, center_y = 0, 0.0625  # 长方形中心
width = 0.5  # 长方形的宽度(长)
height = 0.125  # 长方形的高度
half_width = width / 2
half_height = height / 2# 使用tanh函数来近似长方形的四个边界
epsilon = 0.01  # 控制tanh函数的“陡峭度”# 近似上边界
u_top = np.tanh((half_height - (y_i - center_y)) / (2 * epsilon))
# # 近似下边界
# u_bottom = np.tanh((half_height - (center_y - y_i)) / (2 * epsilon))
u_bottom = np.ones((1000, 1000))
# 近似左边界
u_left = np.tanh((half_width - (x_i - center_x)) / (2 * epsilon))
# 近似右边界
u_right = np.tanh((half_width - (center_x - x_i)) / (2 * epsilon))# 长方形的内部是四个边界的交集,取四个边界中的最小值
u0 = np.minimum.reduce([u_top, u_bottom, u_left, u_right])# # 绘制结果
fig, ax = plt.subplots()
p = ax.pcolormesh(x_i, y_i, u0, cmap='viridis', shading='auto')
ax.set_aspect('equal', 'box')  # 保持x和y轴的比例相同
fig.colorbar(p, ax=ax, label='u0 Value')# 设置标题和坐标轴标签
plt.title('Approximate Rectangle using tanh')
plt.xlabel('X')
plt.ylabel('Y')# 显示图形
plt.grid()
plt.show()

相关文章:

个人笔记--python用tanh画圆形,正方形,长方形(epsilon界面宽度)

用tanh函数画图 圆形 import numpy as np import matplotlib.pyplot as plt# 创建一个二维网格 xx np.linspace(-1, 1, 1000) yy np.linspace(-1, 1, 1000) x_i, y_i np.meshgrid(xx, yy)# 圆的半径和中心 r 0.4 center_x, center_y 0, 0 # 假设圆心在(0, 0)# 计算每个网…...

学习Java,stringbuilder用法

有sb.append添加元素&#xff0c;sb.reverse反转内容&#xff0c;sb.tostring转换成字符串&#xff0c;sb.length计算长度。...

16-云原生监控体系-rabbitmq_exporter监控 RabbitMQ-[部署Dashborad告警规则实战]

文章目录 1. 二进制方式部署1.1. 二进制包下载和部署1.2. 配置1.2.1. 可用的环境变量1.2.2. 使用变量2. docker-compose 方式部署3. 配置到 Prometheus3. Metrics3.1. 全局3.2. 基础信息3.3. Queues3.3.1 Queues - Gauge3.3.2. Queues - Counter...

四大运营商频段-2024

四大运营商频段-2023 中国移动900MHz(Band8),889-904/934-949MHz&#xff1a;1.8GHz(Band3),1710-1735/1805-1830MHz&#xff1a;1.9GHz(Band39),1885-1915MHz&#xff1a;2GHz(Band34),2010-2025MHz&#xff1a;2.3GHz(Band40),2320-2370MHz&#xff1a;2.6GHz(Band41,n41),25…...

260只出现一次的数字

一&#xff1a;题目描述 二&#xff1a;思路讲解 三&#xff1a;代码 class Solution { public:vector<int> singleNumber(vector<int>& nums) {int sum 0;for(const int& e : nums){sum ^ e;}int l (sum INT_MIN ? sum : sum&(-sum));int sum1 0…...

【高阶数据结构(八)】跳表详解

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:高阶数据结构专栏⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习更多数据结构   &#x1f51d;&#x1f51d; 高阶数据结构 1. 前言2. 跳表的概…...

用旧安卓手机当 linux 开发机

1. 下载 Termux (快速链接&#xff0c;如果失效或者要下载最新版请去github release 下载 ) 注意手机硬件&#xff0c;我这个是 64 的所以下 64 的 https://github.com/termux/termux-app/releases/download/v0.118.0/termux-app_v0.118.0github-debug_arm64-v8a.apk 2. 弄到…...

discuz如何添加主导航

大家好&#xff0c;今天教大家怎么样给discuz添加主导航。方法其实很简单&#xff0c;大家跟着我操作既可。一个网站的导航栏是非常重要的&#xff0c;一般用户进入网站的第一印象就是看网站的导航栏。如果大家想看效果的话可以搜索下网创有方&#xff0c;或者直接点击查看效果…...

[每日一练]患某种疾病的患者,正则表达式的匹配

该题目来源于力扣&#xff1a; 1527. 患某种疾病的患者 - 力扣&#xff08;LeetCode&#xff09; 题目要求&#xff1a; 患者信息表&#xff1a; Patients ----------------------- | Column Name | Type | ----------------------- | patient_id | int | | pati…...

PHP身份证识别接口、线上平台如何实现身份证实名认证功能?

线上平台实现身份证实名认证的功能&#xff0c;需要结合身份证识别接口来完成。首先&#xff0c;用户通过上传身份证图片或者拍照的方式实现证件信息的提取&#xff0c;身份证实名认证接口通过对提取到的证件信息进行核验&#xff0c;以此来实现线上用户身份的实名认证&#xf…...

若依:mybatis查询的结果未映射到实体类报null

开启驼峰命名转换&#xff1a; mapUnderscoreToCamelCase: true 我的是mtybatis配置开启驼峰命名转换不生效&#xff0c;还需要在MyBatisConfig中配置 // 配置mybatis自动转驼峰 生效 sessionFactory.getObject().getConfiguration().setMapUnderscoreToCamelCase(true)&#x…...

成都百洲文化传媒有限公司电商服务可信吗?

在当今数字化浪潮席卷之下&#xff0c;电商行业蓬勃发展&#xff0c;成为推动经济增长的重要引擎。在这一领域&#xff0c;成都百洲文化传媒有限公司凭借其专业的电商服务&#xff0c;迅速崛起&#xff0c;成为行业的佼佼者。该公司不仅深谙电商市场的运营之道&#xff0c;更以…...

【递归、搜索与回溯】递归、搜索与回溯准备+递归主题

递归、搜索与回溯准备递归主题 1.递归2.搜索3.回溯与剪枝4.汉诺塔问题5.合并两个有序链表6.反转链表7.两两交换链表中的节点8.Pow(x, n)-快速幂&#xff08;medium&#xff09; 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你…...

MVC前端怎么写:深入解析与实战指南

MVC前端怎么写&#xff1a;深入解析与实战指南 在Web开发领域&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;是一种广泛使用的架构模式&#xff0c;它将应用程序的数据、界面和控制逻辑分离&#xff0c;使得代码更加清晰、易于维护。本文将详细探讨MVC前端如何…...

LINUX网络设置

一、1.1.ifconfig&#xff1a;当前设备正在启动的网卡&#xff08;启动的&#xff09; ifconfig -a &#xff1a;当前所有设备的网卡&#xff08;启动的和没有启动的都包括&#xff09; 1.2.ifconfig展示的ens33各行含意&#xff1a; 1.2.1 ens33: flags 4163<UP, …...

双指针解题

验证回文数&#xff08;验证回文数-CSDN博客&#xff09;和判断在子序列&#xff08;判断子序列-CSDN博客&#xff09;已经在之前进行了计算&#xff0c;今天有三个新的双指针问题&#xff1a; 两数之和II—输入有序数组 给你一个下标从 1 开始的整数数组 numbers &#xff0…...

【Text2SQL 论文】DIN-SQL:分解任务 + 自我纠正 + in-context 让 LLM 完成 Text2SQL

论文&#xff1a;DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction ⭐⭐⭐⭐ NeurIPS 2023, arXiv:2304.11015 Code: Few-shot-NL2SQL-with-prompting | GitHub 文章目录 一、论文速读1.1 Schema Linking Module1.2 Classification & Decompo…...

基于Springboot+vue实现的汽车服务管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…...

ROS2从入门到精通4-3:全局路径规划插件开发案例(以A*算法为例)

目录 0 专栏介绍1 路径规划插件的意义2 全局规划插件编写模板2.1 构造规划插件类2.2 注册并导出插件2.3 编译与使用插件 3 全局规划插件开发案例(A*算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习&#xff0c;掌握ROS2底层基本分布式原理&#xff0c;并具有机器人建…...

Java学习【认识异常】

Java学习【认识异常】 认识异常异常的种类异常的作用 异常的处理方式JVM默认的处理方式捕获异常finally 多个异常的处理异常中的方法抛出异常 自定义异常 认识异常 在Java中&#xff0c;将程序执行过程中发生的不正常行为称为异常 异常的种类 Error代表的是系统级别的错误&a…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...