当前位置: 首页 > news >正文

用开源模型MusicGen制作六一儿童节专属音乐

使用的是开源模型MusicGen,它可以根据文字描述或者已有旋律生成高质量的音乐(32kHz),其原理是通过生成Encodec token然后再解码为音频,模型利用EnCodec神经音频编解码器来从原始波形中学习离散音频token。EnCodec将音频信号映射到一个或多个并行的离散token流。然后使用一个自回归语言模型来递归地对EnCodec中的音频token进行建模。生成的token然后被馈送到EnCodec解码器,将它们映射回音频空间并获取输出波形。最后,可以使用不同类型的条件模型来控制生成

在这里插入图片描述

准备运行环境

拷贝模型文件

import moxing as mox
mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/MusicGen/model/', 'model')
mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/opus-mt-zh-en', 'opus-mt-zh-en')
mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/frpc_linux_amd64', 'frpc_linux_amd64')

基于Python3.9.15 创建虚拟运行环境

!/home/ma-user/anaconda3/bin/conda create -n python-3.9.15 python=3.9.15 -y --override-channels --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
!/home/ma-user/anaconda3/envs/python-3.9.15/bin/pip install ipykernel

修改Kernel文件

import json
import osdata = {"display_name": "python-3.9.15","env": {"PATH": "/home/ma-user/anaconda3/envs/python-3.9.15/bin:/home/ma-user/anaconda3/envs/python-3.7.10/bin:/modelarts/authoring/notebook-conda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/anaconda3/envs/PyTorch-1.8/bin"},"language": "python","argv": ["/home/ma-user/anaconda3/envs/python-3.9.15/bin/python","-m","ipykernel","-f","{connection_file}"]
}if not os.path.exists("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/"):os.mkdir("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/")with open('/home/ma-user/anaconda3/share/jupyter/kernels/python-3.9.15/kernel.json', 'w') as f:json.dump(data, f, indent=4)print('kernel.json文件修改完毕')

安装依赖

!pip install --upgrade pip
!pip install torch==2.0.1 torchvision==0.15.2
!pip install sentencepiece 
!pip install librosa
!pip install --upgrade transformers scipy
!pip install gradio==4.16.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
!cp frpc_linux_amd64 /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2
!chmod +x /home/ma-user/anaconda3/envs/python-3.9.15/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2

模型测试

模型推理

#@title Default title text 
import torch
from transformers import AutoProcessor, MusicgenForConditionalGeneration, pipelinezh2en = pipeline("translation", model="./opus-mt-zh-en")
prompt = "六一儿童节  男孩专属节奏感强的音乐"
prompt = zh2en(prompt)[0].get("translation_text")
print(prompt)device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained("./model/")
model = MusicgenForConditionalGeneration.from_pretrained("./model/")
model.to(device)inputs = processor(text=[prompt],padding=True,return_tensors="pt",
).to(device)# max_new_tokens对应生成音乐的长度,1024表示生成20s长的音乐;
# 目前最大支持生成30s长的音乐,对应max_new_tokens值为1536
audio_values = model.generate(**inputs, max_new_tokens=1024)

生成音频文件

from IPython.display import Audiosampling_rate = model.config.audio_encoder.sampling_rate
if torch.cuda.is_available():audio_data = audio_values[0].cpu().numpy()
else:audio_data = audio_values[0].numpy()Audio(audio_data, rate=sampling_rate)

保存文件

import scipysampling_rate = model.config.audio_encoder.sampling_rate
if torch.cuda.is_available():audio_data = audio_values[0, 0].cpu().numpy()
else:audio_data = audio_values[0, 0].numpy()
scipy.io.wavfile.write("music_out.wav", rate=sampling_rate, data=audio_data)

在这里插入图片描述

图形化生成界面应用

import torch
import scipy
import librosa
from transformers import AutoProcessor, MusicgenForConditionalGeneration, pipelinedef music_generate(prompt: str, duration: int):zh2en = pipeline("translation", model="./opus-mt-zh-en")token = int(duration / 5 * 256)print('token:',token)prompt = zh2en(prompt)[0].get("translation_text")print('prompt:',prompt)device = 'cuda' if torch.cuda.is_available() else 'cpu'processor = AutoProcessor.from_pretrained("./model/")model = MusicgenForConditionalGeneration.from_pretrained("./model/")model.to(device)inputs = processor(text=[prompt],padding=True,return_tensors="pt",).to(device)audio_values = model.generate(**inputs, max_new_tokens=token)sampling_rate = model.config.audio_encoder.sampling_rateif torch.cuda.is_available():audio_data = audio_values[0, 0].cpu().numpy()else:audio_data = audio_values[0, 0].numpy()scipy.io.wavfile.write("music_out.wav", rate=sampling_rate, data=audio_data)audio,sr = librosa.load(path="music_out.wav")return sr, audio
import gradio as grwith gr.Blocks() as demo:gr.HTML("""<h1 align="center">文本生成音乐</h1>""")with gr.Row():with gr.Column(scale=1):prompt = gr.Textbox(lines=1, label="提示语")duration = gr.Slider(5, 30, value=15, step=5, label="歌曲时长(单位:s)", interactive=True)runBtn = gr.Button(value="生成", variant="primary")with gr.Column(scale=1):music = gr.Audio(label="输出")runBtn.click(music_generate, inputs=[prompt, duration], outputs=[music], show_progress=True)demo.queue().launch(share=True)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:- Avoid using `tokenizers` before the fork if possible- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:- Avoid using `tokenizers` before the fork if possible- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 4.16.0, however version 4.29.0 is available, please upgrade.
--------
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:- Avoid using `tokenizers` before the fork if possible- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Running on public URL: https://cd3ee3f9072d7e8f5d.gradio.liveThis share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)

点击链接打开图形界面,如图所示
在这里插入图片描述

相关文章:

用开源模型MusicGen制作六一儿童节专属音乐

使用的是开源模型MusicGen&#xff0c;它可以根据文字描述或者已有旋律生成高质量的音乐(32kHz)&#xff0c;其原理是通过生成Encodec token然后再解码为音频&#xff0c;模型利用EnCodec神经音频编解码器来从原始波形中学习离散音频token。EnCodec将音频信号映射到一个或多个并…...

Ps:批处理

Ps菜单&#xff1a;文件/自动/批处理 Automate/Batch 批处理 Batch命令可以对一个文件夹中的文件执行事先创建的动作 Actions&#xff0c;从而快速地完成大量的重复性操作&#xff0c;提升工作效率。 提示 1&#xff1a; 可以从 Adobe Bridge 中调用 Photoshop 的批处理命令。 …...

前端框架中的虚拟DOM和实际DOM之间的关系

聚沙成塔每天进步一点点 本文回顾 ⭐ 专栏简介前端框架中的虚拟DOM和实际DOM之间的关系1. 实际DOM&#xff08;Real DOM&#xff09;1.1 定义1.2 特点 2. 虚拟DOM&#xff08;Virtual DOM&#xff09;2.1 定义2.2 特点 3. 虚拟DOM的工作流程3.1 创建虚拟DOM3.2 比较虚拟DOM&…...

MySQL进阶——SQL性能分析

在上篇文章我们学习了MySQL进阶——存储引擎&#xff0c;这篇文章学习MySQL进阶——SQL性能分析。 SQL性能分析主要是从SQL语句执行频率、耗时时间、CPU使用情况和执行时表连接情况进行分析&#xff0c;常用的方法工具有&#xff1a;SQL执行频率、慢查询日志、profile详情和ex…...

在RT-Thread下为MPU手搓以太网MAC驱动-4

文章目录 MAC驱动里面对MDIO的支持MAC驱动与MDIO总线 这是个人驱动开发过程中做的一些记录&#xff0c;仅代表个人意见和理解&#xff0c;不喜勿喷 MAC驱动需要支持不同的PHY芯片 MAC驱动里面对MDIO的支持 在第一篇文章中提到对MAC设备做出了抽象&#xff0c;其中MAC抽象里面有…...

可的哥(Codigger)推出Monaco编辑器插件,提升编程体验

Monaco编辑器&#xff0c;作为业界领先的代码编辑器&#xff0c;在编程体验中发挥着不可或缺的重要作用&#xff0c;能够在多种编程语言和开发环境中表现出色&#xff0c;为开发者提供高效、便捷的编程环境。可的哥&#xff08;Codigger&#xff09;在应用商店上线Monaco编辑器…...

为什么选择mobx

对于React而言&#xff0c;大家熟能而详的是redux&#xff0c;但我们的项目用的是mobx&#xff0c;接下来就让我给你详细说下它的优势和不足&#xff0c;可以参考。 MobX是什么&#xff1f; MobX 是一种简单易用的状态管理库&#xff0c;它采用基于观察者的模式&#xff0c;可…...

如何解决段转储问题

非常恶心 &#xff0c;这个问题困了我一个月&#xff0c;怀疑过代码有问题 &#xff0c;怀疑过数据集没处理好&#xff0c;怀疑过环境没有配置好&#xff0c;尝试改动&#xff0c;跑过很多次&#xff0c;还是段转储报错卡住。。。 然后一个月荒废&#xff0c;打算放弃这个模型…...

【杂谈】AIGC之ChatGPT-与智能对话机器人的奇妙对话之旅

与智能对话机器人的奇妙对话之旅 引言 在数字时代的浪潮中&#xff0c;ChatGPT如同一位智慧的旅伴&#xff0c;它不仅能够与我们畅谈古今&#xff0c;还能解答我们的疑惑&#xff0c;成为我们探索知识海洋的得力助手。今天&#xff0c;就让我们走进ChatGPT的世界&#xff0c;…...

CentOS7配置国内清华源并安装docker-ce以及配置docker加速

说明 由于国内访问国外的网站包括docker网站&#xff0c;由于种种的原因经常打不开&#xff0c;或无法访问&#xff0c;所以替换成国内的软件源和国内镜像就是非常必要的了&#xff0c;这里整理了我安装配置的基本的步骤。 国内的软件源有很多&#xff0c;这里选择清华源作为…...

JL-03-Y1 清易易站

产品概述 清易易站是清易电子新研发的一体式气象站&#xff0c;坚持科学化和人文化相结合的设计理念&#xff0c;应用新检测原理研发的传感器观测各类气象参数&#xff0c;采用社会上时尚的工艺理念设计气象站的整体结构&#xff0c;实现了快速观测、无线传输、数据准确、精度较…...

PipeSer管线管网云服务

行业需求 地下管网&#xff0c;作为现代城市不可或缺的基础设施&#xff0c;堪称城市的“地下生命线”。它承载着城市的供水、排水、燃气、电力、通信等重要功能&#xff0c;是确保城市正常运转和居民生活便利的关键所在。将地下管网的复杂布局和运行状态以三维形式直观展现出来…...

kubesphere报错

1.安装过程报错unable to sign certificate: must specify a CommonName [rootnode1 ~]# ./kk init registry -f config-sample.yaml -a kubesphere.tar.gz _ __ _ _ __ | | / / | | | | / / | |/ / _ _| |__ ___| |/…...

【QT5】<总览二> QT信号槽、对象树及样式表

文章目录 前言 一、QT信号与槽 1. 信号槽连接模型 2. 信号槽介绍 3. 自定义信号槽 二、不使用UI文件编程 三、QT的对象树 四、添加资源文件 五、样式表的使用 六、QSS文件的使用 前言 承接【QT5】&#xff1c;总览一&#xff1e; QT环境搭建、快捷键及编程规范。若存…...

2024.05.24 校招 实习 内推 面经

绿*泡*泡VX&#xff1a; neituijunsir 交流*裙 &#xff0c;内推/实习/校招汇总表格 1、实习丨蔚来2025届实习生招募计划开启&#xff08;内推&#xff09; 实习丨蔚来2025届实习生招募计划开启&#xff08;内推&#xff09; 2、校招&实习丨联芯集成电路2025届暑期实习…...

如何理解 Java 8 引入的 Lambda 表达式及其使用场景

Lambda表达式是Java 8引入的一项重要特性&#xff0c;它使得编写简洁、可读和高效的代码成为可能。Lambda表达式本质上是一种匿名函数&#xff0c;能够更简洁地表示可传递的代码块&#xff0c;用于简化函数式编程的实现。 一、Lambda表达式概述 1. 什么是Lambda表达式 Lambd…...

GPT-4与GPT-4O的区别详解:面向小白用户

1. 模型介绍 在人工智能的语言模型领域&#xff0c;OpenAI的GPT-4和GPT-4O是最新的成员。这两个模型虽然来源于相同的基础技术&#xff0c;但在功能和应用上有着明显的区别。 GPT-4&#xff1a;这是一个通用型语言模型&#xff0c;可以理解和生成自然语言。无论是写作、对话还…...

使用throttle防止按钮多次点击

背景&#xff1a;如上图所示&#xff0c;点击按钮&#xff0c;防止按钮点击多次 <div class"footer"><el-button type"primary" click"submitThrottle">发起咨询 </el-button> </div>import { throttle } from loda…...

Echarts 在折线图的指定位置绘制一个图标展示

文章目录 需求分析需求 在线段交汇处用一个六边形图标展示 分析 可以使用 markPoint 和 symbol 属性来实现。这是一个更简单和更标准的方法来添加标记点在运行下述代码后,你将在浏览器中看到一个折线图,其中在 [3, 35] (即图表中第四个数据点 Thu 的 y 值为 35 的位置)处…...

适用于 Windows 的 8 大数据恢复软件

数据恢复软件可帮助您恢复因意外删除或由于某些技术故障&#xff08;如硬盘损坏等&#xff09;而丢失的数据。这些工具可帮助您从硬盘驱动器 (HDD) 中高效地恢复丢失的数据&#xff0c;因为这些工具不支持从 SSD 恢复数据。重要的是要了解&#xff0c;您删除的数据不会被系统永…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

字符串哈希+KMP

P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...