当前位置: 首页 > news >正文

Unity3D Delaunay德罗内三角算法详解

Unity3D是一款强大的游戏开发引擎,它提供了丰富的功能和工具,使开发者能够轻松创建出色的游戏和应用程序。其中,Delaunay德罗内三角算法是一种常用的计算几何算法,用于生成三角形网格,其在Unity3D中的应用也非常广泛。本文将详细介绍Unity3D中Delaunay德罗内三角算法的原理和实现,并给出相应的代码示例。

对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀!

一、Delaunay德罗内三角算法原理

Delaunay德罗内三角算法是一种用于生成三角形网格的算法,其主要思想是在给定一组点的情况下,构建一个不包含任何点在其内部的三角形网格。在这个三角形网格中,任意两个三角形之间都满足德罗内圆空间最小原则,即对于任意两个相邻的三角形,其外接圆不包含任何其他点。

Delaunay德罗内三角算法的基本步骤如下:

  1. 初始化:将所有点按照一定规则放入一个初始三角形中。
  2. 逐点插入:依次将每个点插入到当前三角形网格中。
  3. 修正:对于每个插入的点,根据德罗内圆空间最小原则,修正相邻的三角形。
  4. 输出:生成最终的三角形网格。

二、Delaunay德罗内三角算法实现

在Unity3D中,可以使用C#语言来实现Delaunay德罗内三角算法。以下是一个简单的代码示例,用于在Unity3D中生成Delaunay三角形网格:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;public class DelaunayTriangulation : MonoBehaviour
{public List<Vector2> points;void Start(){// 初始化点集points = new List<Vector2>();points.Add(new Vector2(0, 0));points.Add(new Vector2(1, 0));points.Add(new Vector2(0.5f, Mathf.Sqrt(3) / 2));// 生成Delaunay三角形网格List<Triangle> triangles = Triangulate(points);}// 生成Delaunay三角形网格List<Triangle> Triangulate(List<Vector2> points){List<Triangle> triangles = new List<Triangle>();// 创建一个超级三角形包围所有点float minX = points[0].x;float minY = points[0].y;float maxX = points[0].x;float maxY = points[0].y;for (int i = 1; i < points.Count; i++){if (points[i].x < minX) minX = points[i].x;if (points[i].y < minY) minY = points[i].y;if (points[i].x > maxX) maxX = points[i].x;if (points[i].y > maxY) maxY = points[i].y;}float dx = maxX - minX;float dy = maxY - minY;float deltaMax = Mathf.Max(dx, dy);float midx = (minX + maxX) / 2;float midy = (minY + maxY) / 2;Vector2 p1 = new Vector2(midx - 20 * deltaMax, midy - deltaMax);Vector2 p2 = new Vector2(midx, midy + 20 * deltaMax);Vector2 p3 = new Vector2(midx + 20 * deltaMax, midy - deltaMax);triangles.Add(new Triangle(p1, p2, p3));// 逐点插入for (int i = 0; i < points.Count; i++){List<Triangle> badTriangles = new List<Triangle>();List<Edge> polygon = new List<Edge>();for (int j = triangles.Count - 1; j >= 0; j--){if (triangles[j].CircumcircleContains(points[i])){badTriangles.Add(triangles[j]);polygon.Add(triangles[j].edge1);polygon.Add(triangles[j].edge2);polygon.Add(triangles[j].edge3);triangles.RemoveAt(j);}}List<Edge> boundary = new List<Edge>();for (int j = polygon.Count - 1; j >= 0; j--){if (polygon.FindAll(x => x.Equals(polygon[j])).Count == 1){boundary.Add(polygon[j]);}}for (int j = boundary.Count - 1; j >= 0; j--){triangles.Add(new Triangle(boundary[j].p1, boundary[j].p2, points[i]));}}// 移除超级三角形for (int i = triangles.Count - 1; i >= 0; i--){if (triangles[i].ContainsVertex(p1) || triangles[i].ContainsVertex(p2) || triangles[i].ContainsVertex(p3)){triangles.RemoveAt(i);}}return triangles;}
}public class Triangle
{public Vector2 p1, p2, p3;public Edge edge1, edge2, edge3;public Triangle(Vector2 p1, Vector2 p2, Vector2 p3){this.p1 = p1;this.p2 = p2;this.p3 = p3;edge1 = new Edge(p1, p2);edge2 = new Edge(p2, p3);edge3 = new Edge(p3, p1);}public bool ContainsVertex(Vector2 point){return point == p1 || point == p2 || point == p3;}public bool CircumcircleContains(Vector2 point){float ax = p1.x - point.x;float ay = p1.y - point.y;float bx = p2.x - point.x;float by = p2.y - point.y;float cx = p3.x - point.x;float cy = p3.y - point.y;float ab = ax * (p1.x + point.x) + ay * (p1.y + point.y);float bc = bx * (p2.x + point.x) + by * (p2.y + point.y);float ca = cx * (p3.x + point.x) + cy * (p3.y + point.y);float circumcircle = ax * (by * ca - bc * cy) - bx * (ay * ca - ab * cy) + cx * (ay * bc - ab * by);return circumcircle > 0;}
}public class Edge
{public Vector2 p1, p2;public Edge(Vector2 p1, Vector2 p2){this.p1 = p1;this.p2 = p2;}public bool Equals(Edge other){return (p1 == other.p1 && p2 == other.p2) || (p1 == other.p2 && p2 == other.p1);}
}

在上面的代码示例中,首先定义了一个DelaunayTriangulation类,其中包含了Triangulate方法用于生成Delaunay三角形网格。在Triangulate方法中,首先创建一个超级三角形包围所有点,然后逐点插入,修正相邻的三角形,并最终生成最终的三角形网格。Triangle和Edge类分别用于表示三角形和边,其中包含了一些辅助方法用于判断点是否在三角形内部和计算德罗内圆。

三、总结

通过本文的介绍,我们了解了Unity3D中Delaunay德罗内三角算法的原理和实现方法。Delaunay德罗内三角算法是一种常用的计算几何算法,用于生成三角形网格。在Unity3D中,我们可以使用C#语言来实现Delaunay德罗内三角算法,并生成漂亮的三角形网格。希望本文对你有所帮助,谢谢阅读!

相关文章:

Unity3D Delaunay德罗内三角算法详解

Unity3D是一款强大的游戏开发引擎&#xff0c;它提供了丰富的功能和工具&#xff0c;使开发者能够轻松创建出色的游戏和应用程序。其中&#xff0c;Delaunay德罗内三角算法是一种常用的计算几何算法&#xff0c;用于生成三角形网格&#xff0c;其在Unity3D中的应用也非常广泛。…...

JAVA小案例-输出100-150中能被3整除的数,每5个换行

JAVA小案例-输出100-150中能被3整除的数&#xff0c;每5个换行 代码如下&#xff1a; public class Continue {/*** continue练习&#xff0c;输出100-150中能被3整除的数&#xff0c;每5个换行* param args*/public static void main(String[] args) {int count 0;//计数器…...

论程序员的职业素养

文章目录 前言一、命名规范1. HTML命名规范2. CSS命名规范3. JavaScript命名规范4. 文件和文件夹命名规范5. 代码案例 二、代码注释规范1. 注释规范2. 案例代码HTMLCSS (styles/main.css)JavaScript (scripts/main.js) 三、代码逻辑规范1.逻辑规范2. 代码案例清晰的函数和模块化…...

前端canvas绘图,利用canvas在图片上面绘制标记以及给canvas添加点击事件。

前端canvas绘图&#xff0c;利用canvas在图片上面绘制标记以及给canvas添加点击事件。 需要实现的效果如下图: 首先需要一个承载的核心画布 <canvas id"canvas" width"800" height"600"></canvas>全部代码&#xff1a; <!DOCT…...

38、Flink 的 WindowAssigner 之 GlobalWindows 示例

1、注意 使用 GlobalWindows 需要自定义 Trigger&#xff0c;否则窗口中的数据不会被计算。 2、代码示例 import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org…...

同事仅靠着自己写的npm包跳槽去了大厂,羡慕了一整天

同事们之间总会悄悄聊一些话题&#xff0c;比如聊一些八卦啦&#xff0c;聊一些领导啦&#xff0c;也会偶尔说想跳槽&#xff0c;但这年头&#xff0c;跳槽多费劲啊&#xff0c;谁没事敢动。还别说&#xff0c;边上做了个同事&#xff0c;前两天还真要撤了&#xff0c;聊了半天…...

Yocto - bitbake任务中clean和cleanall的区别

在 BitBake 中&#xff0c;clean 和 cleanall 命令都用于删除构建工件&#xff0c;但它们的范围和执行的清理程度不同。 1. clean 命令&#xff1a; 目的&#xff1a;clean命令用于删除与特定任务或配方相关的临时构建文件和工件。 范围&#xff1a;它只清除指定任务或配方生…...

Spring 中如何控制 Bean 的加载顺序?

如果你脱口而出说添加 Order 注解或者是实现 Ordered 接口&#xff0c;那么恭喜&#xff0c;你掉坑了。 一 Order 注解和 Ordered 接口 在 Spring 框架中&#xff0c;Order 是一个非常实用的元注解&#xff0c;它位于 spring-core 包下&#xff0c;主要用于控制某些特定上下文…...

【学习笔记】Windows GDI绘图(十)Graphics详解(中)

文章目录 Graphics的方法AddMetafileComment添加注释BeginContainer和EndContainer新建、还原图形容器不指定指定源与目标矩形指定源与目标矩形 Clear清空并填充指定颜色CopyFromScreen截图CopyPixelOperation DrawImage绘制图像DrawImage的GraphicsDrawImageAbort回调ExcludeC…...

web学习笔记(六十二)

目录 1.键盘事件 2.KeepAlive 3.组件传值 3.1 兄弟组件传值 3.2 组件树传值 3.3 发布订阅者传值 1.键盘事件 keydown表示键盘事件&#xff0c;在不加修饰符的情况下&#xff0c;点击键盘上的任意位置都可以触发键盘事件&#xff0c; <template><div><!--…...

每天CTF小练一点--ctfshow年CTF

初一 题目&#xff1a; 2023是兔年&#xff0c;密码也是。聪明的小伙伴们&#xff0c;你能破解出下面的密码吗&#xff1f; 感谢大菜鸡师傅出题 flag格式是ctfshow{xxxxxx}.或许密码也有密码。 密文是&#xff1a; U2FsdGVkX1M7duRffUvQgJlESPfOTV2i4TJpc9YybgZ9ONmPk/RJje …...

Java Set接口 - TreeSet类

TreeSet 是 Java 集合框架中的一个类&#xff0c;它实现了 NavigableSet 接口&#xff0c;而 NavigableSet 是 SortedSet 接口的一个子接口。TreeSet 基于红黑树&#xff08;一种自平衡的二叉搜索树&#xff09;实现&#xff0c;因此它可以保证集合中的元素以升序排列。 以下是…...

css 理解了原理,绘制三角形就简单了

1.border-位置 注意&#xff1a;border-bottom/up/right/left 主要是以三角形的结构搭建而成&#xff0c;而border也是如此。而且从边框的外围开始计算像素尺寸。在理解了这一点之后&#xff0c;绘制三角形就简单多了。 1.transparent 注意&#xff1a;该属性主要是颜色透明…...

【JavaEE进阶】——MyBatis操作数据库 (#{}与${} 以及 动态SQL)

目录 &#x1f6a9;#{}和${} &#x1f388;#{} 和 ${}区别 &#x1f388;${}使用场景 &#x1f4dd;排序功能 &#x1f4dd;like 查询 &#x1f6a9;数据库连接池 &#x1f388;数据库连接池使⽤ &#x1f6a9;MySQL开发企业规范 &#x1f6a9;动态sql &#x1f388…...

电阻应变片的结构

电阻应变片的结构 常用的电阻应变片有金属应变片和半导体应变片两种。金属应变片分为体型和薄膜型。半导体应变片常见的有体型、薄膜型、扩散型、外延型、PN结及其他形式。图2—2所示为工程常见的应变片实物。 电阻应变片的典型结构如图2—3所示。它由敏感栅、基底、覆盖层和引…...

云原生时代:从 Jenkins 到 Argo Workflows,构建高效 CI Pipeline

作者&#xff1a;蔡靖 Argo Workflows Argo Workflows [ 1] 是用于在 Kubernetes 上编排 Job 的开源的云原生工作流引擎。可以轻松自动化和管理 Kubernetes 上的复杂工作流程。适用于各种场景&#xff0c;包括定时任务、机器学习、ETL 和数据分析、模型训练、数据流 pipline、…...

【数据库系统概论】事务

概述 在数据库系统中&#xff0c;事务&#xff08;Transaction&#xff09;是指一组作为单个逻辑工作单元执行的操作。这些操作要么全部成功&#xff08;提交&#xff09;&#xff0c;要么全部失败&#xff08;回滚&#xff09;。事务的主要目的是确保数据库的完整性和一致性&…...

C++-排序算法详解

目录 一. 冒泡排序&#xff1a; 二. 插入排序&#xff1a; 三. 快速排序&#xff1a; 四. 选择排序 五, 归并排序 六, 堆排序. 排序算法是一种将一组数据按照特定顺序&#xff08;如升序或降序&#xff09;进行排列的算法。 其主要目的是对一组无序的数据进行整理&#…...

Kotlin 引用(双冒号::)

文章目录 双冒号::引用函数普通函数成员函数类构造函数 引用变量&#xff08;很少用&#xff09;普通变量成员变量 双冒号:: Kotlin 中可以使用双冒号::对某一变量、函数进行引用。 Note&#xff1a;MyClass::class可用于获取KClass<MyClass>&#xff0c;此时的双冒号::…...

C++ day3练习

设计一个Per类&#xff0c;类中包含私有成员:姓名、年龄、指针成员身高、体重&#xff0c;再设计一个Stu类&#xff0c;类中包含私有成员:成绩、Per类对象p1&#xff0c;设计这两个类的构造函数、析构函数。 #include <iostream>using namespace std;class Per{private:…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...