当前位置: 首页 > news >正文

【力扣】矩阵中的最长递增路径

一、题目描述

二、解题思路

1、先求出以矩阵中的每个单元格为起点的最长递增路径

题目中说,对于每个单元格,你可以往上,下,左,右四个方向移动那么以一个单元格为起点的最长递增路径就是:从该单元格往上,下,左,右四个方向走的四条递增路径中的最大值(即最长的一条递增路径)。

2、在求出的所有最长递增路径中找最大值

因为题目是求矩阵中的最长递增路径,所以要在求出的所有最长递增路径中找最大值。

3、使用“记忆化搜索”(递归+“备忘录” )来解决该题。

三、 代码

class Solution {int m, n;//遍历上、下、左、右四个方向所需的数组int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};int[][] memo;  //备忘录public int longestIncreasingPath(int[][] matrix) {m = matrix.length;n = matrix[0].length;memo = new int[m][n];//求所有的最长递增路径中的最大值int ret = 0;for(int i = 0; i < m; i++) {for(int j = 0; j < n; j++) {ret = Math.max(ret,dfs(i, j, matrix));}}return ret;}//递归函数//求出以矩阵中的每个单元格为起点的最长递增路径(上下左右四个方向中的最大值)public int dfs(int i, int j, int[][] matrix) {if(memo[i][j] != 0) {return memo[i][j];}int ret = 1;for(int k = 0; k < 4; k++) {int x = i + dx[k];int y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {ret = Math.max(ret, dfs(x,y,matrix)+1);}}memo[i][j] = ret;return ret;}
}

 

 

相关文章:

【力扣】矩阵中的最长递增路径

一、题目描述 二、解题思路 1、先求出以矩阵中的每个单元格为起点的最长递增路径 题目中说&#xff0c;对于每个单元格&#xff0c;你可以往上&#xff0c;下&#xff0c;左&#xff0c;右四个方向移动。那么以一个单元格为起点的最长递增路径就是&#xff1a;从该单元格往上…...

语音深度鉴伪识别项目实战:基于深度学习的语音深度鉴伪识别算法模型(二)音频数据预处理及去噪算法+Python源码应用

前言 深度学习技术在当今技术市场上面尚有余力和开发空间的&#xff0c;主流落地领域主要有&#xff1a;视觉&#xff0c;听觉&#xff0c;AIGC这三大板块。 目前视觉板块的框架和主流技术在我上一篇基于Yolov7-LPRNet的动态车牌目标识别算法模型已有较为详细的解说。与AIGC相…...

网络原理——http/https ---http(1)

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 今天你敲代码了吗 网络原理 HTTP/HTTPS HTTP,全称为"超文本传输协议" HTTP 诞⽣与1991年. ⽬前已经发展为最主流使⽤的⼀种应⽤层协议. 实际上,HTTP最新已经发展到 3.0 但是当前行业中主要使用的HT…...

Docker安装、使用,容器化部署springboot项目

目录 一、使用官方安装脚本自动安装 二、Docker离线安装 1. 下载安装包 2. 解压 3.创建docker.service文件 4. 启动docker 三、docker常用命令 1. docker常用命令 2. docker镜像命令 3. docker镜像下载 4.docker镜像push到仓库 5. docker操作容器 6.docker …...

USB主机模式——Android

理论 摘自&#xff1a;USB 主机和配件概览 | Connectivity | Android Developers (google.cn) Android 通过 USB 配件和 USB 主机两种模式支持各种 USB 外围设备和 Android USB 配件&#xff08;实现 Android 配件协议的硬件&#xff09;。 在 USB 主机模式下&#xff0…...

240520Scala笔记

240520Scala笔记 第 7 章 集合 7.1 集合1 数组Array 集合(Test01_ImmutableArray): package chapter07 ​ object Test01_ImmutableArray {def main(args: Array[String]): Unit {// 1. 创建数组val arr: Array[Int] new Array[Int](5)// 另一种创建方式val arr2 Array(…...

【React】封装一个好用方便的消息框(Hooks Bootstrap 实践)

引言 以 Bootstrap 为例&#xff0c;使用模态框编写一个简单的消息框&#xff1a; import { useState } from "react"; import { Modal } from "react-bootstrap"; import Button from "react-bootstrap/Button"; import bootstrap/dist/css/b…...

tomcat10部署踩坑记录-公网IP和服务器系统IP搞混

1. 服务器基本条件 使用的阿里云服务器&#xff0c;镜像系统是Ubuntu16.04java version “17.0.11” 2024-04-16 LTS装的是tomcat10.1.24阿里云服务器安全组放行了&#xff1a;8080端口 服务器防火墙关闭&#xff1a; 监听情况和下图一样&#xff1a; tomcat正常启动&#xff…...

探索Sass:Web开发的强大工具

在现代Web开发中,CSS(层叠样式表)作为前端样式设计的核心技术,已经发展得非常成熟。然而,随着Web应用的复杂性不断增加,传统的CSS书写方式逐渐暴露出一些不足之处,如代码冗长、难以维护、缺乏编程功能等。为了解决这些问题,Sass(Syntactically Awesome Stylesheets)应…...

vue组件之间的通信方式有哪些

在开发过程中&#xff0c;数据传输是一个核心的知识点&#xff0c;掌握了数据传输&#xff0c;相当于掌握了80%的内容。 Vue.js 提供了多种组件间的通信方式&#xff0c;这些方式适应不同的场景和需求。下面是4种常见的通信方式&#xff1a; 1. Props & Events (父子组件通…...

111、二叉树的最小深度

给定一个二叉树&#xff0c;找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 题解&#xff1a;找出最小深度也就是找出根节点相对所有叶子结点的最小高度&#xff0c;在这也表明了根节点的高度是变化的&#xff0c;相对不同的叶子结点有不同的高度。…...

SpringBoot3依赖管理,自动配置

文章目录 1. 项目新建2. 相关pom依赖3. 依赖管理机制导入 starter 所有相关依赖都会导入进来为什么版本号都不用写&#xff1f;如何自定义版本号第三方的jar包 4. 自动配置机制5. 核心注解 1. 项目新建 直接建Maven项目通过官方提供的Spring Initializr项目创建 2. 相关pom依…...

音视频开发17 FFmpeg 音频解码- 将 aac 解码成 pcm

这一节&#xff0c;接 音视频开发12 FFmpeg 解复用详情分析&#xff0c;前面我们已经对一个 MP4文件&#xff0c;或者 FLV文件&#xff0c;或者TS文件进行了 解复用&#xff0c;解出来的 视频是H264,音频是AAC&#xff0c;那么接下来就要对H264和AAC进行处理&#xff0c;这一节…...

vue2中封装图片上传获取方法类(针对后端返回的数据不是图片链接,只是图片编号)

在Vue 2中实现商品列表中带有图片编号&#xff0c;并将返回的图片插入到商品列表中&#xff0c;可以通过以下步骤完成&#xff1a; 在Vue组件的data函数中定义商品列表和图片URL数组。 创建一个方法来获取每个商品的图片URL。 使用v-for指令在模板中遍历商品列表&#xff0c;并…...

【C++面向对象编程】(二)this指针和静态成员

文章目录 this指针和静态成员this指针静态成员 this指针和静态成员 this指针 C中类的成员变量和成员函数的存储方式有所不同&#xff1a; 成员变量&#xff1a;对象的成员变量直接作为对象的一部分存储在内存中。成员函数&#xff1a;成员函数&#xff08;非静态成员函数&am…...

最大矩形问题

柱状图中最大的矩形 题目 分析 矩形的面积等于宽乘以高&#xff0c;因此只要能确定每个矩形的宽和高&#xff0c;就能计算它的面积。如果直方图中一个矩形从下标为 i 的柱子开始&#xff0c;到下标为 j 的柱子结束&#xff0c;那么这两根柱子之间的矩形&#xff08;含两端的柱…...

LeetCode62不同路径

题目描述 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。问总共有多少条不同的路径&#xff1f; …...

GNU Radio实现OFDM Radar

文章目录 前言一、GNU Radio Radar Toolbox编译及安装二、ofdm radar 原理讲解三、GNU Radio 实现 OFDM Radar1、官方提供的 grc①、grc 图②、运行结果 2、修改后的便于后续可实现探测和通信的 grc①、grc 图②、运行结果 四、资源自取 前言 本文使用 GNU Radio 搭建 OFDM Ra…...

东方博宜1760 - 整理抽屉

题目描述 期末考试即将来临&#xff0c;小T由于同时肩负了学习、竞赛、班团活动等多方面的任务&#xff0c;一直没有时间好好整理他的课桌抽屉&#xff0c;为了更好地复习&#xff0c;小T首先要把课桌抽屉里的书分类整理好。 小T的抽屉里堆着 N 本书&#xff0c;每本书的封面上…...

react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项目

文章目录 react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项目背景Vite 和 (Create React App) CRAVite&#xff1f;Vite 是否支持 TypeScript&#xff1f; 用Vite创建react项目参考 react快速开始(四)-之Vite 还是 (Create React App) CRA? 用Vite创建项…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...