当前位置: 首页 > news >正文

港股指数实时行情API接口

港股 指数 实时 行情 API接口

# Restful API
https://tsanghi.com/api/fin/index/HKG/realtime?token={token}&ticker={ticker}

指定指数代码,获取该指数的实时行情(开、高、低、收、量)

更新周期:实时。

请求方式:GET。

# 测试
https://tsanghi.com/api/fin/index/HKG/realtime?token=demo&ticker=HSI

Request请求参数

参数名称

参数类型

参数选项

参数说明

token

字符串

必选

API Token。登录后获取。

country_code

字符串

必选

国家/地区代码。

ticker

字符串

必选

指数代码。

fmt

字符串

可选

输出格式。支持json和csv两种标准输出格式,默认:json。

columns

字符串

可选

输出字段。支持自定义输出,多个字段以半角逗号分隔。

Response响应参数

参数名称

参数类型

参数说明

ticker

字符串

指数代码

date

日期时间

日期时间。格式“yyyy-mm-dd hh:mm:ss”。

open

小数

开盘价

low

小数

最低价

high

小数

最高价

close

小数

收盘价

volume

小数

成交量

amount

小数

成交额(默认不输出)

pre_close

小数

昨收价(默认不输出)

Python示例

import requestsurl = f"https://tsanghi.com/api/fin/index/HKG/realtime?token=demo&ticker=HSI"
data = requests.get(url).json()
print(data)

Response示例

# 更多详情:https://tsanghi.com

相关文章:

港股指数实时行情API接口

港股 指数 实时 行情 API接口 # Restful API https://tsanghi.com/api/fin/index/HKG/realtime?token{token}&ticker{ticker}指定指数代码,获取该指数的实时行情(开、高、低、收、量)。 更新周期:实时。 请求方式&#xff1a…...

Qt5开发实战_图形_QPen

Qpen是Qt框架中的一个类,用于定义绘制线条的属性,包括颜色、宽度、样式、端点样式和连接样式。 具体属性(设置颜色和设置宽度直接pass从样式开始): 设置样式: pen的样式主要有以下几种: 分别是:直线样式…...

linux进程周边知识——内核对硬件的管理——计算机世界的管理

前言:本节主要讲解内核也就是操作系统对于硬件的管理, 本节内容同样为进程的周边知识。 主要是关于软件方面, 和我的上一篇——冯诺依曼体系结构可以说是兄弟文章, 这篇文章主要是关于硬件方面。 两篇文章都是为学习进程做准备。但…...

同声传译语音合成接口,分段预合成实现丝滑的衔接效果

背景: 在使用微信官方语音合成插件的时候遇到一个问题,textToSpeech这个api的内容限制在官网的文档上明明是1000个字节,也就是说能保证333个中文字符应该是没有问题的,但是也不知道为什么我这里仅仅传了150个中文字符就报错了&…...

数据结构——单链表详解(超详细)(1)

前言: 小编在近日学习了单链表的知识,为了加强记忆,于是诞生了这一篇文章,单链表是数据结构比较重要的知识,读者朋友们一定要去好好的学习!这个可以说是比顺序表更好用的线性表,下面废话不多说&…...

在 Linux 上使用 lspci 命令查看 PCI 总线硬件设备信息

lspci 命令用于显示 Linux 系统上的设备和驱动程序 当在个人电脑或服务器上运行 Linux 时,有时需要识别该系统中的硬件。lspci 命令用于显示连接到 PCI 总线的所有设备,从而满足上述需求。该命令由 pciutils 包提供,可用于各种基于 Linux 和…...

python数据可视化(6)——绘制散点图

课程学习来源:b站up:【蚂蚁学python】 【课程链接:【【数据可视化】Python数据图表可视化入门到实战】】 【课程资料链接:【链接】】 Python绘制散点图查看BMI与保险费的关系 散点图: 用两组数据构成多个坐标点,考察…...

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

​​​​​​​ 目录 一、引言 二、自动语音识别(automatic-speech-recognition) 2.1 概述 2.2 技术原理 2.2.1 whisper模型 2.2.2 Wav2vec 2.0模型 2.3 pipeline参数 2.3.1 pipeline对象实例化参数​​​​​​​ 2.3.2 pipeline对象使用参数…...

Mysql-错误处理: Found option without preceding group in config file

1、问题描述 安装MYSQL时,在cmd中“初始化”数据库时,输入命令: mysqld --initialize --consolecmd报错: D:\mysql-5.7.36-winx64\bin>mysql --initialize --console mysql: [ERROR] Found option without preceding group …...

[iOS]内存分区

[iOS]内存分区 文章目录 [iOS]内存分区五大分区栈区堆区全局区常量区代码区验证内存使用注意事项总结 函数栈堆栈溢出栈的作用 参考博客 在iOS中,内存主要分为栈区、堆区、全局区、常量区、代码区五大区域 还记得OC是C的超类 所以C的内存分区也是一样的 iOS系统中&a…...

sklearn基础教程:掌握机器学习入门的钥匙

sklearn基础教程:掌握机器学习入门的钥匙 在数据科学和机器学习的广阔领域中,scikit-learn(简称sklearn)无疑是最受欢迎且功能强大的库之一。它提供了简单而高效的数据挖掘和数据分析工具,让研究人员、数据科学家以及…...

【unity实战】使用unity制作一个红点系统

前言 注意,本文是本人的学习笔记记录,这里先记录基本的代码,后面用到了再回来进行实现和整理 素材 https://assetstore.unity.com/packages/2d/gui/icons/2d-simple-ui-pack-218050 框架: RedPointSystem.cs using System.…...

开发指南046-机构树控件

为了简化编程&#xff0c;平台封装了很多前端组件。机构树就是常用的组件之一。 基本用法&#xff1a; import QlmOrgTree from /qlmcomponents/tree/QlmOrgTree <QlmOrgTree></QlmOrgTree> 功能&#xff1a; 根据权限和控制参数显示机构树。机构树数据来源于核…...

SpringBatch文件读写ItemWriter,ItemReader使用详解

SpringBatch文件读写ItemWriter&#xff0c;ItemReader使用详解 1. ItemReaders 和 ItemWriters1.1. ItemReader1.2. ItemWriter1.3. ItemProcessor 2.FlatFileItemReader 和 FlatFileItemWriter2.1.平面文件2.1.1. FieldSet 2.2. FlatFileItemReader2.3. FlatFileItemWriter 3…...

如何评估AI模型:评估指标的分类、方法及案例解析

如何评估AI模型&#xff1a;评估指标的分类、方法及案例解析 引言第一部分&#xff1a;评估指标的分类第二部分&#xff1a;评估指标的数学基础第三部分&#xff1a;评估指标的选择与应用第四部分&#xff1a;评估指标的局限性第五部分&#xff1a;案例研究第六部分&#xff1a…...

程序员学CFA——经济学(七)

经济学&#xff08;七&#xff09; 汇率外汇市场外汇市场的功能外汇市场的参与者卖方买方 汇率的计算汇率报价基础货币与计价货币直接报价与间接报价外汇报价习惯 名义汇率和实际汇率货币的升值与贬值交叉汇率计算即期汇率与远期汇率即期汇率与远期汇率的概念远期升水/贴水远期…...

imx335帧率改到10fps的方法

验证: imx335.c驱动默认的帧率是30fps,要将 IMX335 的帧率更改为 10fps,需要调整与帧率相关的参数。FPS(frames per second,每秒帧数)通常由 sensor 的曝光时间(exposure time)和垂直总时间(VTS,Vertical Total Size)共同决定。VTS 定义了 sensor 完成一帧图像采集…...

Large Language Model系列之二:Transformers和预训练语言模型

Large Language Model系列之二&#xff1a;Transformers和预训练语言模型 1 Transformer模型 Transformer模型是一种基于自注意力机制的深度学习模型&#xff0c;它最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出&#xff0c;主要用于机器翻译任务。随…...

java后端项目启动失败,解决端口被占用问题

报错信息&#xff1a; Web server failed to start . Port 8020 was already in use. 1、查看端口号 netstat -ano | findstr 端口号 2、终止进程 taskkill /F /PID 进程ID 举例&#xff1a;关闭8020端口...

PostgreSQL安装/卸载(CentOS、Windows)

说明&#xff1a;PostgreSQL与MySQL一样&#xff0c;是一款开源免费的数据库技术&#xff0c;官方口号&#xff1a;The World’s Most Advanced Open Source Relational Database.&#xff08;世界上最先进的开源关系数据库&#xff09;&#xff0c;本文介绍如何在Windows、Cen…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...