当前位置: 首页 > news >正文

Meta发布Llama 3.1 405B模型:开源与闭源模型之争的新篇章

引言

在人工智能领域,开源与闭源模型之争一直是热点话题。近日,Meta发布了最新的Llama 3.1 405B模型,以其强大的性能和庞大的参数规模,成为了开源模型中的佼佼者。本文将详细介绍Llama 3.1 405B模型的性能、功能及其在开源领域的影响,并探讨开源与闭源模型的未来发展。

Llama 3.1 405B模型的亮点

Llama 3.1 405B模型是迄今为止最大的开源模型之一,拥有4050亿个参数,使用16000块Nvidia H100 GPU进行训练。这一庞大的模型在性能上可以与当前顶尖的闭源模型如GPT-4o和Claude 3.5 sonnet相媲美。

性能对比

Meta在150多个基准数据集上评估了Llama 3.1 405B模型的性能,并在真实场景中与竞争模型进行了比较。数据显示,Llama 3.1在20%的情景中超越了GPT-4o和Claude 3.5 sonnet,在50%以上的情况下持平。在基准数据集的测试中,Llama 3.1 405B在多个维度上表现突出。

例如,在NIH/Multi-needle基准测试中,Llama 3.1 405B的得分为98.1,在ZeroSCROLLS/QuALITY基准测试中得到了95.2分。这些数据表明,Llama 3.1 405B在理解和生成代码、解决抽象逻辑问题等方面表现出色。

模型改进

与之前的版本相比,Llama 3.1 405B模型在通用任务、知识推理、阅读理解等多个方面创下了新纪录。尤其是在MMLU、SQuAD等细分基准上,提升最为明显。Llama 3.1 8B和70B微调模型在推理、代码、数学、工具使用、多语言等多项能力任务中也取得了显著进步。

例如,8B模型在MMLU测试中的得分从65分提升到73分,70B模型从81分提升到86分。在数学测试中,8B模型的得分从29分大幅提升到52分。

多样化功能

Llama 3.1模型不仅能够编写代码、回答基础数学问题,还能用八种语言总结文件,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。128K的上下文容量使得模型在总结长文本和运行聊天机器人的时候表现更加出色。

此外,Meta计划将Llama 3.1集成到多个终端,如WhatsApp和Meta AI聊天机器人中,并将在Meta的智能眼镜和Meta Quest上以实验模式推出。Meta AI将取代Quest上当前的语音命令,让用户可以免提控制耳机、获取问题的答案、了解实时信息、查看天气等。

开源与闭源模型之争

Meta此次发布的Llama 3.1模型在开源与闭源模型之争中具有重要意义。长期以来,闭源模型在性能上略胜一筹,而Llama 3.1的发布则标志着开源模型在性能上的重大突破。

性能提升的关键

Llama 3.1 405B模型的性能提升得益于Meta在训练数据和训练方法上的优化。模型在超过15万亿个token的数据上进行训练,使用了标准的仅解码器Transformer模型架构进行微调,同时实施了一种迭代的后训练方法,生成高质量的合成数据来提升模型功能。

此外,Meta还在预训练和后训练数据的数量和质量上进行了改进,引入了更细致的预处理和管理流程,以及更严格的质量保证和过滤技术。

开源策略的影响

在Llama 3.1发布的同时,Meta首席执行官扎克伯格发表了一篇开源宣言,重申了Meta对开源的承诺。扎克伯格指出,开源模型与闭源模型之间的差距正在逐渐缩小,Llama 3.1可以与最先进的闭源模型媲美,并在一些能力上处于领先地位。

未来展望

随着Llama 3.1的发布,开源与闭源模型之争将进入一个新的阶段。开源模型在性能和功能上不断追赶闭源模型,使得开发者在选择模型时有了更多的选择。Meta的开源策略不仅推动了技术的发展,也促进了AI领域的创新和合作。

结论

Llama 3.1 405B模型的发布是人工智能领域的一大里程碑,标志着开源模型在性能和功能上的重大突破。Meta通过优化训练数据和方法,使Llama 3.1在多个基准测试中表现出色,具备了与顶尖闭源模型竞争的实力。

开源与闭源模型之争仍将继续,但随着开源模型的不断进步,二者之间的差距将逐渐缩小。Meta的开源策略为开发者提供了更多的选择和灵活性,也为AI领域的创新和合作创造了新的机遇。

对于Llama 3.1和Meta的开源愿景,开发者们有着广泛的期待和关注。未来,随着技术的不断发展和应用场景的扩展,开源模型将在人工智能领域发挥越来越重要的作用。欢迎大家在评论区分享对Llama 3.1和开源AI的看法与期待。

相关文章:

Meta发布Llama 3.1 405B模型:开源与闭源模型之争的新篇章

引言 在人工智能领域,开源与闭源模型之争一直是热点话题。近日,Meta发布了最新的Llama 3.1 405B模型,以其强大的性能和庞大的参数规模,成为了开源模型中的佼佼者。本文将详细介绍Llama 3.1 405B模型的性能、功能及其在开源领域的…...

Linux网络协议深度解析:从IP到TCP/IP堆栈

Linux网络协议深度解析是一个复杂而详细的主题,它涵盖了从基本的数据包传输到复杂的协议交互。以下是对"Linux网络协议深度解析:从IP到TCP/IP堆栈"这一主题的简要解析: IP协议(Internet Protocol) •作用:…...

AWS DMS MySQL为源端,如何在更改分区的时候避免报错

问题描述: 文档[1]中描述MySQL compatible Databases作为DMS任务的源端,不支持MySQL 分区表的 DDL 更改。 在源端MySQL进行分区添加时,日志里会出现如下报错: [SOURCE_CAPTURE ]W: Cannot change partition in table members…...

Java从基础到高级特性及应用

Java,作为一门历史悠久且广泛应用的编程语言,自1995年问世以来,便以其跨平台性、面向对象、自动内存管理等特点,在软件开发领域占据了举足轻重的地位。从桌面应用到企业级系统,从移动开发到云计算服务,Java…...

JavaScript(17)——事件监听

什么是事件? 事件是在编程时系统内发生的动作或发生的事情,比如用户在网页上单击一个按钮 什么是事件监听? 就是让程序检测是否有事件产生,一旦有事件触发,就立刻调用一个函数做出响应,也称为绑定事件或…...

Dav_笔记11:SQL Tuning Overview-sql调优 之 4

开发高效的SQL语句 本节介绍了提高SQL语句效率的方法: ■验证优化程序统计信息 ■审查执行计划 ■重构SQL语句 ■重组索引 ■修改或禁用触发器和约束 ■重组数据 ■随着时间的推移维护执行计划 ■尽可能少地访问数据 验证优化程序统计信息 查询优化器在确定最佳执行…...

vue3引入openlayers

安装ol包 OpenLayers作为 ol npm包提供,它提供了官方支持的API的所有模块。 官方地址:ol npm install ol模块和子模块约定 具有CamelCase名称的OpenLayers模块提供类作为默认导出,并且可能包含其他常量或函数作为命名导出: i…...

大数据管理中心设计规划方案(可编辑的43页PPT)

引言:随着企业业务的快速发展,数据量急剧增长,传统数据管理方式已无法满足高效处理和分析大数据的需求。建立一个集数据存储、处理、分析、可视化于一体的大数据管理中心,提升数据处理能力,加速业务决策过程&#xff0…...

Android --- 广播

广播是什么? 一种相互通信,传递信息的机制,组件内、进程间(App之间) 如何使用广播? 组成部分 发送者-发送广播 与启动其他四大组件一样,广播发送也是使用intent发送。 设置action&#xff…...

AR 眼镜之-蓝牙电话-实现方案

目录 📂 前言 AR 眼镜系统版本 蓝牙电话 来电铃声 1. 🔱 技术方案 1.1 结构框图 1.2 方案介绍 1.3 实现方案 步骤一:屏蔽原生蓝牙电话相关功能 步骤二:自定义蓝牙电话实现 2. 💠 屏蔽原生蓝牙电话相关功能 …...

stl-set

目录 目录 内部自动有序、不含重复元素 关于能不能自己造一个cmp,还挺复杂。 访问:只能用迭代器且受限 添加元素:没有pushback,用insert 复杂度:ologn ​编辑 查找元素find()&#xff1…...

【Stable Diffusion】(基础篇五)—— 使用SD提升分辨率

使用SD提升分辨率 本系列博客笔记主要参考B站nenly同学的视频教程,传送门:B站第一套系统的AI绘画课!零基础学会Stable Diffusion,这绝对是你看过的最容易上手的AI绘画教程 | SD WebUI 保姆级攻略_哔哩哔哩_bilibili 在前期作画的…...

5.CSS学习(浮动)

浮动(float) 是一种传统的网页布局方式,通过浮动,可以使元素脱离文档流的控制,使其横向排列。 其编写在CSS样式中。 float:none(默认值) 元素不浮动。 float:left 设置的元素在其包含…...

Spring Cloud微服务项目统一封装数据响应体

在微服务架构下,处理服务之间的通信和数据一致性是一个重要的挑战。为了提高开发效率、保证数据的一致性及简化前端开发,统一封装数据响应体是一种非常有效的实践。本文博主将介绍如何在 Spring Cloud 微服务项目中统一封装数据响应体,并分享…...

java算法day20

java算法day20 701.二叉搜索树中的插入操作450.删除二叉搜索树中的节点108 将有序数组转换为二叉搜索树 本次的题目都是用递归函数的返回值来完成,多熟悉这样的用法,很方便。 其实我感觉,涉及构造二叉树的题目,用递归函数的返回值…...

web自动化测试-python+selenium+unitest

文章目录 Web自动化测试工具1. 主流的Web自动化测试工具2. Selenium家族史 Web自动化测试环境搭建基于Python环境搭建示例:通过程序启动浏览器,并打开百度首页,暂停3秒,关闭浏览器 页面元素定位1. 如何进行元素定位?2.…...

LeetCode题练习与总结:组合两个表--175

一、题目描述 SQL Schema > Pandas Schema > 表: Person ---------------------- | 列名 | 类型 | ---------------------- | PersonId | int | | FirstName | varchar | | LastName | varchar | ---------------------- personId 是该表的主…...

数据结构:二叉搜索树(简单C++代码实现)

目录 前言 1. 二叉搜索树的概念 2. 二叉搜索树的实现 2.1 二叉树的结构 2.2 二叉树查找 2.3 二叉树的插入和中序遍历 2.4 二叉树的删除 3. 二叉搜索树的应用 3.1 KV模型实现 3.2 应用 4. 二叉搜索树分析 总结 前言 本文将深入探讨二叉搜索树这一重要的数据结构。二…...

深入理解Prompt工程

前言:因为大模型的流行,衍生出了一个小领域“Prompt工程”,不知道大家会不会跟小编一样,不就是写提示吗,这有什么难的,不过大家还是不要小瞧了Prompt工程,现在很多大模型把会“Prompt工程”作为…...

代码随想录算法训练营day6 | 242.有效的字母异位词、349. 两个数组的交集、202. 快乐数、1.两数之和

文章目录 哈希表键值 哈希函数哈希冲突拉链法线性探测法 常见的三种哈希结构集合映射C实现std::unordered_setstd::map 小结242.有效的字母异位词思路复习 349. 两个数组的交集使用数组实现哈希表的情况思路使用set实现哈希表的情况 202. 快乐数思路 1.两数之和思路 总结 今天是…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...