微信公众号获取用户openid(PHP版,snsapi_base模式)
微信公众号获取用户openid的接口有2个:snsapi_base、snsapi_userinfo
详情见微信公众号开发文档:https://developers.weixin.qq.com/doc/offiaccount/OA_Web_Apps/Wechat_webpage_authorization.html
本文介绍用PHP方式调用snsapi_base接口获取微信用户的openid(注意:此接口只能获取到用户的openid,如果要获取用户的昵称、头像的信息需要用snsapi_userinfo接口)
操作步骤:
第一步:先让用户关注你的微信公众号(解释:不关注公众号获得openid也没啥用)
第二步:让用户访问snsapi_base接口网址
(1)用户访问接口的方式1:发接口网址给用户,让用户在微信客户端打开网址;(此方法不方便)
(2)用户访问接口的方式2:让用户打开微信扫一扫,扫描二维码直接跳转网址打开;(可以用第三方类库QrCode将url转成二维码图片,此方法方便)
接口网址:
https://open.weixin.qq.com/connect/oauth2/authorize?appid=填你的APPID&redirect_uri=填你的回调网址&response_type=code&scope=snsapi_base&state=STATE#wechat_redirect
回调网址要将url编码后再填进去。
不会url编码怎么办?
可以用在线url网址编解码工具,比如:https://www.bejson.com/enc/urlencode/

微信开发文档中说到:
跳转回调redirect_uri,应当使用https链接来确保授权code的安全性。

但是在实际应用中,用http协议的网址也是可以正常回调的!
当用户访问接口链接后,微信会在你的回调网址后面添加上参数:
redirect_uri/?code=CODE&state=STATE
参数中的CODE是获取openid的关键!
第三步:在回调网址中获取微信用户的openid
假设回调文件名为 get_wx_openid.php
那么在此文件中,编写如下代码即可获取到openid:
<?php$wxCode = $_GET['code']; if($wxCode != null){try{$getOpenIdUrl = "https://api.weixin.qq.com/sns/oauth2/access_token?appid=填你的APPID&secret=填你的APPSecret密钥&code=" . $wxCode . "&grant_type=authorization_code";$json = file_get_contents($getOpenIdUrl);$jsonObj = json_decode($json);$openId = $jsonObj->openid; }catch(Exception $err){} }
?>
上述代码中,利用code去微信access_token接口获取openid信息,获取到的json内容如下:

只要提取json中的openid字段即可!
获取到openid之后,就可以给用户发送模板消息了!
相关文章:
微信公众号获取用户openid(PHP版,snsapi_base模式)
微信公众号获取用户openid的接口有2个:snsapi_base、snsapi_userinfo 详情见微信公众号开发文档:https://developers.weixin.qq.com/doc/offiaccount/OA_Web_Apps/Wechat_webpage_authorization.html 本文介绍用PHP方式调用snsapi_base接口获取微信用户…...
DuckDB核心模块揭秘 | 第1期 | 向量化执行引擎之Pipeline
DuckDB核心模块揭秘 | 第1期 | 向量化执行引擎之Pipeline DuckDB是一款非常火的OLAP嵌入式数据库,性能超级棒。它分为多个组件:解析器、逻辑规划器、优化器、物理规划器、执行器以及事务和存储管理层。其中解析器原语PgSQL的解析器;逻辑规划器…...
Vue如何让用户通过a链接点击下载一个excel文档
在Vue中,通过<a>标签让用户点击下载Excel文档,通常需要确保服务器支持直接下载该文件,并且你有一个可以直接访问该文件的URL。以下是一些步骤和示例,展示如何在Vue应用中实现这一功能。 1. 服务器端支持 首先,…...
美摄科技企业级视频拍摄与编辑SDK解决方案
在数字化浪潮汹涌的今天,视频已成为企业传递信息、塑造品牌、连接用户不可或缺的强大媒介。为了帮助企业轻松驾驭这一视觉盛宴的制作过程,美摄科技凭借其在影视级非编技术领域的深厚积累,推出了面向企业的专业视频拍摄与编辑SDK解决方案&…...
MySQL:增删改查、临时表、授权相关示例
目录 概念 数据完整性 主键 数据类型 精确数字 近似数字 字符串 二进制字符串 日期和时间 MySQL常用语句示例 SQL结构化查询语言 显示所有数据库 显示所有表 查看指定表的结构 查询指定表的所有列 创建一个数据库 创建表和列 插入数据记录 查询数据记录 修…...
初识git工具~~上传代码到gitee仓库的方法
目录 1.背景~~其安装 2.gitee介绍 2.1新建仓库 2.2进行相关配置 3.拉取仓库 4.服务器操作 4.1克隆操作 4.2查看本地仓库 4.3代码拖到本地仓库 4.4关于git三板斧介绍 4.4.1add操作 4.4.2commit操作 4.4.3push操作 5.一些其他说明 5.1.ignore说明 5.2git log命令 …...
Redis知识点总价
1 redis的数据结构 2 redis的线程模型 1) Redis 采用单线程为什么还这么快 之所以 Redis 采用单线程(网络 I/O 和执行命令)那么快,有如下几个原因: Redis 的大部分操作都在内存中完成,并且采用了高效的…...
大语言模型-GPT-Generative Pre-Training
一、背景信息: GPT是2018 年 6 月由OpenAI 提出的预训练语言模型。 GPT可以应用于复杂的NLP任务中,例如文章生成,代码生成,机器翻译,问答对话等。 GPT也采用两阶段的训练过程,第一阶段是无监督的方式来预训…...
mybatis批量插入、mybatis-plus批量插入、mybatis实现insertList、mybatis自定义实现批量插入
文章目录 一、mybatis新增批量插入1.1、引入依赖1.2、自定义通用批量插入Mapper1.3、把通用方法注册到mybatisplus注入器中1.4、实现InsertList类1.5、需要批量插入的dao层继承批量插入Mapper 二、可能遇到的问题2.1、Invalid bound statement 众所周知,mybatisplus…...
Springboot项目的行为验证码AJ-Captcha(源码解读)
目录 前言1. 复用验证码2. 源码解读2.1 先走DefaultCaptchaServiceImpl类2.2 核心ClickWordCaptchaServiceImpl类 3. 具体使用 前言 对于Java的基本知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目…...
【初阶数据结构篇】时间(空间)复杂度
文章目录 算法复杂度时间复杂度1. 定义2. 表示方法3. 常见时间复杂度4.案例计算分析冒泡排序二分查找斐波那契数列(递归法)斐波那契数列(迭代法) 空间复杂度案例分析冒泡排序斐波那契数列(递归法)斐波那契数…...
C# 设计模式分类
栏目总目录 1. 创建型模式(Creational Patterns) 创建型模式主要关注对象的创建过程,包括如何实例化对象,并隐藏实例化的细节。 单例模式(Singleton):确保一个类只有一个实例,并提…...
前端模块化CommonJS、AMD、CMD、ES6
在前端开发中,模块化是一种重要的代码组织方式,它有助于将复杂的代码拆分成可管理的小块,提高代码的可维护性和可重用性。CommonJS、AMD(异步模块定义)和CMD(通用模块定义)是三种不同的模块规范…...
论文阅读:(DETR)End-to-End Object Detection with Transformers
论文阅读:(DETR)End-to-End Object Detection with Transformers 参考解读: 论文翻译:End-to-End Object Detection with Transformers(DETR)[已完结] - 怪盗kid的文章 - 知乎 指示函数&…...
react中路由跳转以及路由传参
一、路由跳转 1.安装插件 npm install react-router-dom 2.路由配置 路由配置:react中简单的配置路由-CSDN博客 3.实现代码 // src/page/index/index.js// 引入 import { Link, useNavigate } from "react-router-dom";function IndexPage() {const …...
C++ STL set_symmetric_difference
一:功能 给定两个集合A,B;求出两个集合的对称差(只属于其中一个集合,而不属于另一个集合的元素),即去除那些同时在A,B中出现的元素。 二:用法 #include <vector>…...
postman请求响应加解密
部分接口,需要请求加密后,在发动到后端。同时后端返回的响应内容,也是经过了加密。此时,我们先和开发获取到对应的【密钥】,然后在postman的预执行、后执行加入js脚本对明文请求进行加密,然后在发送请求&am…...
数据集,批量更新分类数值OR批量删除分类行数据
数据集批量更新分类OR删除分类行数据 import osdef remove_class_from_file(file_path, class_to_remove):"""从YOLO格式的标注文件中删除指定类别的行记录,并去除空行。:param file_path: YOLO标注文件路径:param class_to_remove: 需要删除的类别…...
一款功能强大的视频编辑软件会声会影2023
会声会影2023是一款功能强大的视频编辑软件,由加拿大Corel公司制作,正版英文名称为Corel VideoStudio。它具备图像抓取和编修功能,可以处理和转换多种视频格式,如MV、DV、V8、TV和实时记录抓取画面文件。会声会影提供了…...
政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署LivePortrait :通过缝合和重定向控制实现高效的肖像动画制作
目录 项目论文介绍 论文中实际开展的工作 非扩散性的肖像动画 基于扩散的肖像动画 方法论 基于Ubuntu的部署实践开始 1. 克隆代码并准备环境 2. 下载预训练权重 3. 推理 快速上手 驱动视频自动裁剪 运动模板制作 4. Gradio 界面 5. 推理速度评估 社区资源 政安…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
