Qwen2-VL的微调及量化
一、Qwen2-VL简介
Qwen2-VL是Qwen-VL的升级版本,能力更强,性能全面提升。尤其是72B参数的版本更是取了惊人的成绩。它可以读懂不同分辨率和不同长宽比的图片,在 MathVista、DocVQA、RealWorldQA、MTVQA 等基准测试创下全球领先的表现;可以理解 20 分钟以上长视频,支持基于视频的问答、对话和内容创作等应用;具备强大的视觉智能体能力,可自主操作手机和机器人,借助复杂推理和决策的能力,Qwen2-VL 可以集成到手机、机器人等设备,根据视觉环境和文字指令进行自动操作。
二、环境装备
具体的环境可以参考我的上篇文(Qwen-VL部署)。这里不再重复内容。另外微调使用的swift这个框架进行的微调,所以还要准备swift的环境。
swift环境安装,此处可以只下载,不pip安装环境,可在下面微调前安装。
git clone https://github.com/modelscope/swift.git
cd swift
#pip install -e .[llm]# 请关注这个ISSUE: https://github.com/QwenLM/Qwen2-VL/issues/12
# pip install torch>=2.4
#pip install git+https://github.com/huggingface/transformers@21fac7abba2a37fae86106f87fcf9974fd1e3830 accelerate
#pip install pyav qwen_vl_utils
如果遇到这个错误:ImportError: transformers>=4.45.0.dev0 is required for a normal functioning of this module, but found transformers==4.44.2
则需要这样安装transformers:
pip install git+https://github.com/huggingface/transformers@21fac7abba2a37fae86106f87fcf9974fd1e3830 accelerate
上面这个错误在量化的时候也会遇到,所以要每次创建环境都要使用上面的命令安装transformers.
三、微调
1、准备数据,数据格式。
[{"id": "1","conversations": [{"from": "user","value": "Picture 1: <img>/data/media/upload/1/a9dc4837-2.png</img>\\n请检查图片中是否有违反作业标准中规定的情况,列出最突出的一种情况。"},{"from": "assistant","value": "图片中存在地面有垃圾的问题"},{"from": "user","value": "请框出图片中的问题"},{"from": "assistant","value": "<ref>问题</ref><box>(28,53),(552,731)</box>"}]}]
2、使用conda创建微调的环境, 创建qwen2的环境
git clone https://github.com/QwenLM/Qwen2-VL.git
cd Qwen2-VL/
conda create -n qwen2 python=3.10 -y
conda activate qwen2
conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia
pip install git+https://github.com/huggingface/transformers@21fac7abba2a37fae86106f87fcf9974fd1e3830 accelerate
pip install pyav qwen_vl_utils#去到swift的目录里面,这里接上面的环境安装。
cd /data/swift
#安装swift的环境
pip install -e .[llm]
3、微调指令
SIZE_FACTOR=8 MAX_PIXELS=602112 CUDA_VISIBLE_DEVICES=0 swift sft \--model_type qwen2-vl-7b-instruct \--model_id_or_path /data/autodl/Qwen2-VL-7B-Instruct \--dataset /data/qwen-vl/Qwen-VL/datasets/result.json,self-cognition \--learning_rate 1e-3 \--batch_size 2 \--num_train_epochs 3 \--logging_steps 3 \--gradient_accumulation_steps 8 \--model_name 智能助手 'Intelligent Assistant' \--model_author 风之飘渺 'Wind'
四、量化
微调成功后,需要合并参数,这时可以同时量化操作,也可以只合并不量化。量化同样使用的swift框架。不量化的情况下,推理非常慢,本人机器配置CPU:2*6330,内存:128G,显卡A5000.大概2分钟左右出结果。量化后还没有测试。
# 使用AutoGPTQ进行量化
pip install auto-gptq#量化指令CUDA_VISIBLE_DEVICES=0 swift export \--ckpt_dir '/data/swift2/swift/output/qwen2-vl-7b-instruct/v3-20240902-150740/checkpoint-93' \--merge_lora true --quant_bits 8 \--load_dataset_config true --quant_method gptq
相关文章:
Qwen2-VL的微调及量化
一、Qwen2-VL简介 Qwen2-VL是Qwen-VL的升级版本,能力更强,性能全面提升。尤其是72B参数的版本更是取了惊人的成绩。它可以读懂不同分辨率和不同长宽比的图片,在 MathVista、DocVQA、RealWorldQA、MTVQA 等基准测试创下全球领先的表现…...
[数据集][目标检测]车窗状态检测车窗开关检测数据集VOC+YOLO格式299张3类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):299 标注数量(xml文件个数):299 标注数量(txt文件个数):299 标注类别…...
自动泊车系统中的YOLOv8 pose关键点车位线检测
自动泊车系统中的YOLOv8关键点车位线检测技术解析 引言 随着智能驾驶技术的快速发展,自动泊车功能成为了现代汽车的重要组成部分。它不仅能够提高驾驶的安全性,还能在一定程度上解决城市停车难的问题。在自动泊车系统中,准确识别停车位的位置…...
Java html生成pdf和图片
在 Java 项目中将 HTML 生成图片是一项常见需求,特别是用于生成报告、预览页面截图等。不同的库和工具在渲染能力、性能以及支持的功能上有所不同。以下是几种主流的技术选型和对比,帮助你选择适合的解决方案。 技术对比总结 技术名称优点缺点适用场景…...
JavaWeb笔记整理——Redis
目录 Redis数据类型 各种数据类型的特点 Redis常用命令 字符串操作命令 哈希操作命令 列表操作命令 集合操作命令 有序集合操作命令 通用命令 在Java中操作Redis Spring Data Redis的使用方式 操作字符串类型的数据 编辑操作hash类型的数据 编辑 操作列表类…...
数据库(mysql)常用命令
一.常见的数据库端口号 Mysql默认端口:3306 oracle 默认端口:1521 Sql server 默认端口:1433 注:Mysql采用 的是C/S(客户端/服务器端)架构 二.sql 语法基础 服务器,数据库,数据表,记录,字段之间的关系: 一台Mysql服务器可以管理多个数据库 一个数据库可以存在多张二维表…...
源网荷储一体化新型电力系统解决方案
风光装机快速增长,加剧电力系统不可控性。截至2023H1,我国风电装机389.21GW,太阳能装机470.67GW,风光合计占总装机的31.76%。其中,2023年H1我国风电新增装机22.99GW,对比22年同期新增12.94GW,同…...
树莓派安装 OpenCV 教程
以下是在树莓派上安装 OpenCV 的教程: 笔者当前Python版本:3.7.3 一、更新树莓派系统 在终端中运行以下命令: sudo apt update sudo apt upgrade二、安装必要的依赖项 安装构建工具和图像 I/O 库: sudo apt install build-e…...
01,大数据总结,zookeeper
1 ,zookeeper :概述 1.1,zookeeper:作用 1 ,大数据领域 :存储配置数据 例如:hadoop 的 ha 配置信息,hbase 的配置信息,都存储在 zookeeper 2 ,应用领…...
伪工厂模式制造敌人
实现效果 1.敌人方实现 敌人代码 using UnityEngine; using UnityEngine.UI;public class EnemyBasics : MonoBehaviour {public int EnemySpeed { get; internal set; }public int EnemyAttackDistance { get; internal set; }public int EnemyChaseDistance { get; interna…...
【linux】pwd命令
pwd 命令在 Linux 和类 Unix 系统中用于显示当前工作目录的完整路径。它是 "print working directory" 的缩写。 当你在终端或命令行界面中工作时,你可能会在不同的目录(或文件夹)之间切换。pwd 命令帮助你确定你当前位于哪个目录…...
Python 如何封装工具类方法,以及使用md5加密
第一步:封装使用方法 在utils目录中,编写我的md5加密的方法,如下: import re import hashlib from os import path from typing import Callable from flask import current_app# 这里封装的是工具类的方法def basename(filenam…...
网络编程的应用
目录 1.单机程序和网络程序 2.客户端与服务端 3.网络编程三要素 3.1 IP地址 3.2 port端口 4.TCP编程 5.UDP编程 1.单机程序和网络程序 之前编写的程序都是单机程序,所有的业务功能实现及数据存储都在一个主机上完成,我们称为单机程序 我们在生活…...
佰朔资本:国内海风加速招标 船舶行业景气上行
昨日,沪指盘中一度下探失守2700点,尾盘在地产、银行等板块的带动下发力上扬,深证成指亦翻红。到收盘,沪指涨0.49%报2717.28点,深证成指涨0.11%报7992.25点,创业板指跌0.11%报1533.47点,上证50指…...
理解AAC和Opus的编码与解码流程
理解AAC和Opus的编码与解码流程及其在Android中的实现,对于音频开发非常重要。下面,我将详细解释这两种编码格式的原理、流程,并结合具体代码示例,帮助你在Android项目中合理地设计和使用它们。 一、AAC(Advanced Audio Coding) 1. AAC的原理与流程 AAC是一种有损音频压…...
设计图纸加密方法知多少?小编给你讲清楚
一、对称加密 使用对称加密算法,对设计图纸进行加密。对称加密使用相同的密钥进行加密和解密,确保只有持有正确密钥的人能够解密文件。 二、非对称加密 使用非对称加密算法,进行设计图纸的加密。非对称加密使用公钥加密、私钥解密的方式&a…...
pycv实时目标检测快速实现
使用python_cv实现目标实时检测 python 安装依赖核心代码快速使用实现结果展示enjoy python 安装依赖 opencv_python4.7.0.72 pandas1.5.3 tensorflow2.11.0 tensorflow_hub0.13.0 tensorflow_intel2.11.0 numpy1.23.5核心代码快速使用 # 使用了TensorFlow Hub和OpenCV库来实…...
记录下如何让字体在div内 自动换行 上下居中
div内样式 display: flex; // flex布局 justify-content: center; // 上下居中 align-items: center; // 左右居中 overflow-wrap: break-word; // 允许字体换行 (若行内的单词无法放下则换行) word-break: break-all; // 强制文本在任意字符间进…...
Shell篇之编写MySQL启动脚本
Shell篇之编写MySQL启动脚本 1. 脚本内容 vim mysql_ctl.sh#!/bin/bashmysql_port3306 mysql_username"root" mysql_password"molinker" mysql_conf"/opt/lanmp/mysql/etc/my.cnf" mysql_sock"/opt/lanmp/mysql/var/mysql.sock"func…...
supermap Iclient3d for cesium加载地形并夸大地形
先看效果图 这是没有夸张之前的都江堰 这是夸大五倍后的都江堰 下面展示代码 主要就是加载supermaponline的skt地形然后夸大 <template><div class"PartOneBox"><div id"cesiumContainer"></div></div> </template>…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
