STM32 输入捕获模式详解:PWM 输入捕获与 PWI 模式(续篇)
在前两篇文章中,我们探讨了 STM32 输入捕获的基础和 PWI 模式的工作原理,特别是定时器的两个通道如何协同工作以捕获 PWM 信号。本文将进一步结合 STM32 标准库函数中的 TIM_PWMIConfig()
,来讲解如何通过库函数配置定时器实现 PWI 模式。
我们将分析该函数的工作流程,讲解它是如何通过不同通道的配置来捕获上升沿和下降沿信号,并计算 PWM 信号的频率和占空比。
1. TIM_PWMIConfig()
函数概述
TIM_PWMIConfig()
函数专门用于配置定时器的 PWI 模式,以捕获外部的 PWM 信号。该函数的核心功能是将定时器的两个输入通道(通常是 CH1 和 CH2)分别设置为捕获上升沿和下降沿信号,从而实现对 PWM 信号周期和占空比的测量。
该函数主要完成了以下任务:
- 输入捕获极性设置:将一个通道(如 CH1)设置为检测上升沿,另一个通道(如 CH2)设置为检测下降沿。
- 通道选择:为两个通道选择输入信号源,CH1 直接输入,CH2 选择间接输入。
- 滤波和预分频器配置:设置输入信号的滤波和预分频参数。
2. TIM_PWMIConfig()
代码分析
void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
{uint16_t icoppositepolarity = TIM_ICPolarity_Rising;uint16_t icoppositeselection = TIM_ICSelection_DirectTI;/* 检查参数有效性 */assert_param(IS_TIM_LIST6_PERIPH(TIMx));/* 配置与输入极性相反的通道极性 */if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising){icoppositepolarity = TIM_ICPolarity_Falling;}else{icoppositepolarity = TIM_ICPolarity_Rising;}/* 配置与输入选择相反的通道选择 */if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI){icoppositeselection = TIM_ICSelection_IndirectTI;}else{icoppositeselection = TIM_ICSelection_DirectTI;}if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1){/* 配置TI1为上升沿捕获 */TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,TIM_ICInitStruct->TIM_ICFilter);/* 设置捕获预分频值 */TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);/* 配置TI2为下降沿捕获 */TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);/* 设置捕获预分频值 */TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);}else{/* 配置TI2为上升沿捕获 */TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,TIM_ICInitStruct->TIM_ICFilter);/* 设置捕获预分频值 */TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);/* 配置TI1为下降沿捕获 */TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);/* 设置捕获预分频值 */TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);}
}
3. 工作原理解析
3.1 上升沿与下降沿的捕获
在 PWI 模式中,TIM_PWMIConfig()
函数的核心任务是通过对两个通道的极性配置实现 PWM 信号的输入捕获。以 TIM3 为例:
- CH1 捕获上升沿:在函数中,CH1 配置为检测 PWM 信号的上升沿,捕获此时的计数器值。
- CH2 捕获下降沿:CH2 配置为捕获下降沿,从而获取信号的低电平时长。
该函数通过以下逻辑处理:
- 根据通道设置判断 CH1 捕获上升沿,CH2 捕获下降沿。
- 如果配置为上升沿捕获,CH1 的输入极性为
TIM_ICPolarity_Rising
,而 CH2 则配置为相反的极性TIM_ICPolarity_Falling
。 - 两个通道同时捕获相同的输入信号,通过 CH1 和 CH2 捕获到的不同时间点,计算出信号的周期和占空比。
3.2 通道选择
函数中不仅配置了通道的极性,还通过 TIM_ICSelection_DirectTI
和 TIM_ICSelection_IndirectTI
配置输入源:
- DirectTI(直接输入):对应的 TIx 信号源直接连接到输入捕获通道。
- IndirectTI(间接输入):另一个通道的输入信号作为该通道的捕获源。这在 PWI 模式中用于确保同一个引脚可以同时捕获上升沿和下降沿信号。
3.3 输入信号滤波和预分频
TIM_ICInitStruct->TIM_ICFilter
用于配置输入信号的滤波,确保抖动或噪声较大的信号不会误触发输入捕获事件。而 TIM_ICInitStruct->TIM_ICPrescaler
则用于调整输入信号的分频率,适用于需要对信号频率进行压缩测量的情况。
4. 基于标准库的完整 PWI 模式代码
void IC_Init(void)
{// 使能GPIOA和TIM3时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);// 配置PA6为输入模式GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; // 上拉输入GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; // PA6引脚GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);// 配置TIM3基本参数TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructre;TIM_TimeBaseInitStructre.TIM_ClockDivision = TIM_CKD_DIV1;TIM_TimeBaseInitStructre.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInitStructre.TIM_Period = 65536 - 1; // 自动重装载值 (ARR)TIM_TimeBaseInitStructre.TIM_Prescaler = 72 - 1; // 预分频值 (PSC)TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructre);// 配置PWM输入捕获TIM_ICInitTypeDef TIM_ICInitStructure;TIM_ICInitStructure.TIM_Channel = TIM_Channel_1; // 通道1TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; // 上升沿TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; // 直接输入TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; // 输入不分频TIM_ICInitStructure.TIM_ICFilter = 0xf; // 滤波TIM_PWMIConfig(TIM3, &TIM_ICInitStructure);// 配置从模式为复位模式TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1); // 选择TI1作为触发输入TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset); // 从模式为复位模式// 启动定时器TIM_Cmd(TIM3, ENABLE);
}uint32_t IC_GetFreq(void)
{return 1000000 / (TIM_GetCapture1(TIM3) + 1); // 单位为Hz
}uint32_t IC_GetDuty(void)
{return (TIM_GetCapture2(TIM3) + 1) * 100 / (TIM_GetCapture1(TIM3) + 1);
}
5. 小结
通过对TIM_PWMIConfig()
函数的分析,我们进一步理解了如何通过 STM32 的标准库函数实现对外部 PWM 信号的捕获和测量。这不仅为开发者提供了更灵活的输入捕获配置方式,也让我们看到了 STM32 定时器的强大功能。你在实际使用输入捕获功能时,遇到过哪些挑战?分享你的解决方法吧!
相关文章:
STM32 输入捕获模式详解:PWM 输入捕获与 PWI 模式(续篇)
在前两篇文章中,我们探讨了 STM32 输入捕获的基础和 PWI 模式的工作原理,特别是定时器的两个通道如何协同工作以捕获 PWM 信号。本文将进一步结合 STM32 标准库函数中的 TIM_PWMIConfig(),来讲解如何通过库函数配置定时器实现 PWI 模式。 我…...

【C++】set/map(重点解析)
目录 一、关联式容器和序列式容器 二、C中的键值对——pair 1.概念 2.定义 3.构造pair 三.set 1.construct构造 2.iterator迭代器 3.insert插入 4.erase删除 5.find查找 6.lower_bound和upper_bound 7.count 四.multiset 五.map 1.insert 2.operator[] 一、…...

【算法篇】动态规划类(1)(笔记)
目录 一、理论基础 1. 大纲 2. 动态规划的解题步骤 二、LeetCode 题目 1. 斐波那契数 2. 爬楼梯 3. 使用最小花费爬楼梯 4. 不同路径 5. 不同路径 II 6. 整数拆分 7. 不同的二叉搜索树 一、理论基础 1. 大纲 动态规划,英文:Dynamic Programm…...
mysql学习教程,从入门到精通,SQL 约束(Constraints)(41)
在数据库设计中,约束(Constraints)用于确保数据的准确性和完整性。它们通过限制可以插入到数据库表中的数据类型来防止无效数据。SQL 中有几种常见的约束类型,包括主键约束(Primary Key)、外键约束…...
使用CSS3与JavaScript实现炫酷的3D旋转魔方及九宫格交换动效
文章目录 前言一、项目需求背景二、CSS3 3D基础知识介绍2.1 什么是CSS3 3D?2.2 主要使用的CSS属性 三、使用HTML和CSS搭建魔方结构四、让魔方动起来:CSS3动画五、九宫格数字交换的JavaScript实现5.1 九宫格布局5.2 随机交换数字 六、随机交换与相邻格子的…...

springboot项目通过maven的profile功能实现通过不同文件夹的方式来组织不同环境配置文件
写在前面 本文看下springboot项目如何通过文件夹的方式来组织不同环境配置文件。 1:正文 一般的我们写springboot项目时配置文件是这个样子的: appliction.yaml --> 通过spring.profiles.activexxx来激活某个指定后缀的配置文件 application-evn1…...

GAN(Generative Adversarial Nets)
GAN(Generative Adversarial Nets) 引言 GAN由Ian J. Goodfellow等人提出,是Ian J. Goodfellow的代表作之一,他还出版了大家耳熟能详的花书(Deep Learning深度学习),GAN主要的思想是同时训练两个模型,生成…...

linux下使用mpi求自然数和
搭建MPI并行计算环境,编写 MPI程序,求和 1 23....1 0000。 要求: 1.使用100个进程; 2.进程0计算1 2...100, 进程1计算101 102... 200, ..... 进程99计算9901 9902... 10000; 3.调用计时函数,分别输出每个进程的计算时间; 4.需使用MPI集群通信函数和同…...

WebGl学习使用attribute变量绘制一个水平移动的点
在WebGL编程中,attribute变量是一种特殊类型的变量,用于从客户端传递数据到顶点着色器。这些数据通常包括顶点的位置、颜色、纹理坐标等,它们是与每个顶点直接相关的信息。attribute变量在顶点着色器中声明,并且对于每个顶点来说都…...
机器学习四大框架详解及实战应用:PyTorch、TensorFlow、Keras、Scikit-learn
目录 框架概述PyTorch:灵活性与研究首选TensorFlow:谷歌加持的强大生态系统Keras:简洁明了的高层 APIScikit-learn:传统机器学习的必备工具实战案例 图像分类实战自然语言处理实战回归问题实战 各框架的对比总结选择合适的框架 1…...

linux源码安装slurm以及mung和openssl
一、源码安装munge 1、编译安装munge (1)下载munge地址:https://github.com/dun/munge/releases (2)解压编译安装: 1 2 3 4 5 6 7 8 创建/data目录 复制文件munge-0.5.15.tar.xz 到/data目录下 tar -Jx…...
分享蓝牙耳机A2DP音频卡顿原因及解决思路
背景 最近一直在更新博客,我觉得写博客有三个好处,一是很多东西时间久了就会忘,记下来方便自己以后回忆和总结,二是记下来可以加深自己对知识的理解,三是可以知识分享,方便他人。 言归正传,今天…...

Mac 下编译 libaom 源码教程
AV1 AV1是一种开放、免版税的视频编码格式,由开放媒体联盟(AOMedia)开发,旨在提供高压缩效率和优秀的视频质量。AV1支持多种分辨率,包括SD、HD、4K和8K,并适用于视频点播(VOD)、直播…...

【成品设计】基于Arduino平台的物联网智能灯
《基于Arduino平台的物联网智能灯》 整体功能: 这个任务中要求实现一个物联网智能灯。实际测试环境中要求设备能够自己创建一个热点,连接这个热点后能自动弹出控制界面(强制门户)。 功能点 基础功能 (60分) 要求作品至少有2个灯…...

安装和配置k8s可视化UI界面dashboard-1.20.6
安装和配置k8s可视化UI界面dashboard-1.20.6 1.环境规划2.初始化服务器1)配置主机名2)设置IP为静态IP3)关闭selinux4)配置主机hosts文件5)配置服务器之间免密登录6)关闭交换分区swap,提升性能7&…...

VLAN:虚拟局域网
VLAN:虚拟局域网 交换机和路由器协同工作后,将原先的一个广播域,逻辑上,切分为多个广播域。 第一步:创建VLAN [SW1]dispaly vlan 查询vlan VID(VLAN ID):用来区分和标定不同的vlan 由12位二进制构成 范围: 0-4…...

利用可解释性技术增强制造质量预测模型
概述 论文地址:https://arxiv.org/abs/2403.18731 本研究提出了一种利用可解释性技术提高机器学习(ML)模型性能的方法。该方法已用于铣削质量预测,这一过程首先训练 ML 模型,然后使用可解释性技术识别不需要的特征并去…...

FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling 摘要:引言:背景3 flexMatch3.1 Curriculum Pseudo Labeling3.2 阈值预热3.3非线性映射函数实验4.1 主要结果4.2 ImageNet上的结果4.3收敛速度加速4.4 消融研究5 相关工作摘要: 最近提出的Fi…...

Spring Cloud 3.x 集成eureka快速入门Demo
1.什么是eureka? Eureka 由 Netflix 开发,是一种基于REST(Representational State Transfer)的服务,用于定位服务(服务注册与发现),以实现中间层服务的负载均衡和故障转移ÿ…...
线性代数 矩阵
一、矩阵基础 1、定义 一组数按照矩形排列而成的数表;形似行列式,区别点是 矩阵行列式符号()或[]| |形状方阵或非方阵方阵本质数表数属性A|A|是A诸多属性中的一种维度m *n (m 与n可以相等也可以不相等)n*n 同型矩阵 若A、B两个矩阵都是mn 矩阵&#x…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...