当前位置: 首页 > news >正文

浅谈归一化

在深度学习中,对网络层进行归一化(Normalization,简称Norm)是一个重要的技巧。常见的归一化方法包括批归一化(Batch Normalization)、层归一化(Layer Normalization)、实例归一化(Instance Normalization)和群归一化(Group Normalization)。下面将详细解释归一化的作用、优劣以及常见方法。

作用

  1. 加速训练

    • 归一化有助于加速神经网络的训练过程。通过规范化输入数据或特征图的分布,梯度下降算法可以更快地收敛。
  2. 稳定性

    • 归一化能减少梯度爆炸和梯度消失问题,这在深层网络中尤为重要。它通过保持激活值的稳定性,提高了训练的稳定性。
  3. 正则化效果

    • 归一化可以起到正则化的效果,减少模型的过拟合。通过在训练过程中引入噪声,归一化可以增强模型的泛化能力。
  4. 平滑损失曲面

    • 归一化有助于平滑损失曲面,使得优化过程更加稳定和高效。

常见归一化方法及其优劣

1. 批归一化(Batch Normalization, BN)

作用

  • 对每个小批量(batch)的数据进行归一化,使得每层的输入在小批量内具有零均值和单位方差。

优点

  • 有效加速训练过程。
  • 减少对初始化的依赖。
  • 在一定程度上有正则化效果,减少模型过拟合。

缺点

  • 对小批量大小敏感,小批量过小会导致归一化效果不佳。
  • 在某些情况下会引入额外的计算开销。
import torch.nn as nn# 批归一化示例
bn_layer = nn.BatchNorm2d(num_features=64)
2. 层归一化(Layer Normalization, LN)

作用

  • 对每个数据样本的所有特征进行归一化,使得每一层的输入具有零均值和单位方差。

优点

  • 对小批量大小不敏感,适用于自然语言处理和小批量训练。

缺点

  • 对计算开销要求较高。
import torch.nn as nn# 层归一化示例
ln_layer = nn.LayerNorm(normalized_shape=[64, 128, 128])
3. 实例归一化(Instance Normalization, IN)

作用

  • 对每个样本的每个通道进行归一化,常用于生成对抗网络(GAN)和风格迁移。

优点

  • 有助于生成图像处理任务中的图像质量提升。

缺点

  • 对特征之间的关系处理较弱,可能在某些任务中效果不佳。
import torch.nn as nn# 实例归一化示例
in_layer = nn.InstanceNorm2d(num_features=64)
4. 群归一化(Group Normalization, GN)

作用

  • 将通道分成若干组,对每组进行归一化,结合了批归一化和层归一化的优点。

优点

  • 对小批量大小不敏感,适用于各种应用场景。
  • 在计算效率和效果上有较好的平衡。

缺点

  • 需要选择合适的组数,可能需要一些超参数调优。
import torch.nn as nn# 群归一化示例
gn_layer = nn.GroupNorm(num_groups=32, num_channels=64)

总结

归一化是深度学习中加速训练、提高模型稳定性和性能的重要技术。不同的归一化方法有各自的适用场景和优劣,选择合适的归一化方法对模型性能的提升至关重要。通过理解和灵活应用这些技术,可以更好地优化深度学习模型。

相关文章:

浅谈归一化

在深度学习中,对网络层进行归一化(Normalization,简称Norm)是一个重要的技巧。常见的归一化方法包括批归一化(Batch Normalization)、层归一化(Layer Normalization)、实例归一化&am…...

lodash常用函数

文章目录 一、数组1、chunk分组2、difference、differenceBy、differenceWith3、findIndex4、intersection、intersectionBy、intersectionWith5、union、unionBy、unionWith 二、对象1、pick、omit 2、get、set三、数学1、sum、sumBy2、range 四、工具函数1、isEqual、isEmpty…...

触控算法总结

一、触控湿手指算法的具体实现原理涉及多个方面的技术和方法,主要包括以下几个关键点 1.电容变化检测 电容式触摸屏通过检测电容变化来确定触摸位置。当手指接触屏幕时,会引起电容的变化。然而,当手指湿润时,水分会影响电容值,导致触摸屏误判成无法正确识别触控点 2.噪声过滤: …...

齐次矩阵包含平移和旋转

第一个矩阵旋转矩阵 A [ R 1 0 0 1 ] A\left[\begin{matrix}R_{1} & 0\\0 & 1\end{matrix}\right] A[R1​0​01​] 第一个平移矩阵 B [ 1 T 1 0 1 ] B\left[\begin{matrix}1 & T_{1}\\0 & 1\end{matrix}\right] B[10​T1​1​] C [ R 2 0 0 1 ] C\left[\be…...

Move AI技术浅析(四):运动跟踪与估计

一、运动跟踪与估计模块概述 运动跟踪与估计 是 Move AI 的核心模块之一,其主要任务是从提取到的关键点特征中,分析和理解运动的动态特性,包括运动轨迹、速度、加速度、方向等。该模块通常包括 时间序列分析 和 运动估计 两个子模块。 时间…...

NCR+可变电荷块3——NCB/cell绘图1

文献method参考: 蛋白质序列数据从uniprot中获取 https://www.uniprot.org/uniprotkb/P46013/entry https://www.uniprot.org/uniprotkb/P06748/entry、 1,电荷分布计算: Charge distribution was calculated as the sum of the charges …...

数据仓库是什么?数据仓库简介

数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持企业的管理决策。以下是对数据仓库的详细解释: 一、定义与特性 定义:数据仓库是构建在组织的现有数据基础上&#x…...

AI的进阶之路:从机器学习到深度学习的演变(二)

AI的进阶之路:从机器学习到深度学习的演变(一) 三、机器学习(ML):AI的核心驱动力 3.1 机器学习的核心原理 机器学习(Machine Learning, ML)突破了传统编程的局限,它不再…...

C++中属性(Attributes)

属性(Attributes)在 C 中的完整讲解 在 C 中,属性(Attributes) 是一种编译时机制,用于附加元数据到函数、变量、类型等元素上,以指导编译器如何优化、检查、警告或者改变编译行为。通过属性&am…...

Go语言中的defer,panic,recover 与错误处理

目录 前言 三个关键字 defer语句 panic语句 recover函数 defer、panic、recover组成的错误处理 总结 前言 在其他编程语言中,如Java,宕机往往以异常的形式存在。底层抛出异常,上层逻辑通过try...catch...fanally机制捕获异常并处理&am…...

(C语言)力扣 904.水果成篮

写在所有的前面: 本文采用C语言实现代码 目录 写在所有的前面:题目说明题目:力扣 904.水果成篮题目出处题目描述Description输入Input输出Output样例Sample限制Hint 解答说明方案解题思路一般情况特殊情况 代码实现其他解释 题目说明 题目…...

2024 年12月英语六级CET6听力原文(Lecture部分)

2024 年12月英语六级CET6听力原文(Long Conersation和Passage) 1 牛津大学关于普遍道德准则的研究及相关观点与建议 译文 2 食物颜色对味觉体验及大脑预期的影响 译文 3 财务资源对意义与幸福之间关系的影响研究 译文...

CentOS下,离线安装vscode的步骤;

前置条件: 1.CentOS7; 步骤: 1.下载vscode指定版本,例如; 例如 code-1.83.1-1696982959.el7.x86_64.rpm 2.使用下面命令: sudo rpm -ivh code-1.83.1-1696982959.el7.x86_64.rpm 其他: 卸载vscode的命…...

ubuntu停止.netcore正在运行程序的方法

在Ubuntu系统中停止正在运行的.NET Core程序,你可以使用以下几种方法: 使用kill命令: 如果你知道.NET Core程序的进程ID(PID),你可以直接使用kill命令来停止它。首先,使用ps命令配合grep来查找.…...

机器学习基础 衡量模型性能指标

目录 1 前言 ​编辑1.1 错误率(Error rate)&精度(Accuracy)&误差(Error): 1.2 过拟合(overfitting): 训练误差小,测试误差大 1.3 欠拟合(underfitting):训练误差大,测试误差大 1.4 MSE: 1.5 RMSE: 1.6 MAE: 1.7 R-S…...

《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)及形态学处理

文章目录 《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)边界填充阈值处理图像平滑处理生成椒盐图片均值滤波处理方框滤波处理高斯滤波处理中值滤波处理 图像形态学腐蚀膨胀开运算闭运算顶帽和黑帽 《OpenCV计算机视觉》-对图片…...

如何让Tplink路由器自身的IP网段 与交换机和电脑的IP网段 保持一致?

问题分析: 正常情况下,我的需求是:电脑又能上网,又需要与路由器处于同一局域网下(串流Pico4 VR眼镜),所以,我是这么连接 交换机、路由器、电脑 的: 此时,登录…...

【JetPack】Navigation知识点总结

Navigation的主要元素&#xff1a; 1、Navigation Graph&#xff1a; 一种新的XML资源文件,包含应用程序所有的页面&#xff0c;以及页面间的关系。 <?xml version"1.0" encoding"utf-8"?> <navigation xmlns:android"http://schemas.a…...

InnoDB引擎的内存结构

InnoDB擅长处理事务&#xff0c;具有自动崩溃恢复的特性 架构图&#xff1a; 由4部分组成&#xff1a; 1.Buffer Pool&#xff1a;缓冲池&#xff0c;缓存表数据和索引数据&#xff0c;减少磁盘I/O操作&#xff0c;提升效率 2.change Buffer&#xff1a;写缓冲区&#xff0c…...

Y3地图制作1:水果缤纷乐、密室逃脱

文章目录 一、水果缤纷乐1.1 游戏设计1.1.1 项目解析1.1.2 项目优化1.1.3 功能拆分 1.2 场景制作1.2.1 场景需求1.2.2 创建主镜头、绘制草稿&#xff0c;构思文案和情景1.2.3 构建场景地图1.2.4 光源与氛围设置 1.3 游戏初始化1.3.1 物编、UI预设置1.3.2 游戏初始化1.3.2 玩家初…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...