Langchain+讯飞星火大模型Spark Max调用
1、安装langchain
#安装langchain环境
pip install langchain==0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple
#灵积模型服务
pip install dashscope -i https://mirrors.aliyun.com/pypi/simple
#安装第三方集成,就是各种大语言模型
pip install langchain-community==0.3.2 -i https://mirrors.aliyun.com/pypi/simple
#加载环境的工具
pip install python-dotenv
2、前期准备工作
第一个准备工作:Websocket服务接口认证信息
传送门:讯飞开放平台-以语音交互为核心的人工智能开放平台
2.1.登录或者注册


2.2 创建建新应用



2.3 领取tokens
选择自己想要的模型,免费领tokens

2.4 申请免费token

2.5查看Tokens
返回“控制台”,打开自己的应用,并选择刚购买的模型,就可以看到tokens已下发

3、调用模型api
调用模型api,使用tokens
3.1 查看API密钥
在“我的应用”中查看申请的应用,找到"APPID","APISecret","APIKey"

3.2 调用实例
查看调用实例:星火认知大模型Web API文档 | 讯飞开放平台文档中心

4、编码实现
4.1 使用langchain
import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.llms import SparkLLM
load_dotenv(find_dotenv())os.environ["IFLYTEK_SPARK_APP_ID"] = "ba04ca"
os.environ["IFLYTEK_SPARK_API_KEY"] = "YzhGNjMDBmMjVhMmQmFjNWIxM4"
os.environ["IFLYTEK_SPARK_API_SECRET"] = "6647142991bebde80fa4d4127a"llm_spark = SparkLLM()
res = llm_spark.invoke("中国国庆日是哪一天?")
print(res)
4.2、使用sparkAi
pip install --upgrade spark_ai_python
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage#星火认知大模型Spark Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = 'ba04ca'
SPARKAI_API_SECRET = '6647142991bebde80fa4d4127a'
SPARKAI_API_KEY = 'YzhGNjMDBmMjVhMmQmFjNWIxM4'
#星火认知大模型Spark Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'if __name__ == '__main__':spark = ChatSparkLLM(spark_api_url=SPARKAI_URL,spark_app_id=SPARKAI_APP_ID,spark_api_key=SPARKAI_API_KEY,spark_api_secret=SPARKAI_API_SECRET,spark_llm_domain=SPARKAI_DOMAIN,streaming=False,)messages = [ChatMessage(role="user",content='你好呀')]handler = ChunkPrintHandler()a = spark.generate([messages], callbacks=[handler])print(a)

5、常见错误
5.1、报错信息:
APPID错误:
Error Code: 10005, Error: InvalidParamError:(...) app_id is not same to kong app_id
APISecret错误:
Handshake status 401 Unauthorized ... b'{"message":"HMAC signature does not match"}'
APIKey错误:
Handshake status 401 Unauthorized ... b'{"message":"HMAC signature cannot be verified: fail to retrieve credential"}'

解决方案:检测是否填写正确,是否填反信息,例如APISecret和APIKey填反了。
5.2、报错信息:
Error Code: 11200, Error: AppIdNoAuthError:(...) tokens.total
排查:检查token(Spark Max)控制台-讯飞开放平台
原因2:调用的模型版本错误(微调中出现)
排查与解决:检查你的domain和Spark_url值,是不是和模型版本对应,修改即可
#调用微调大模型时,设置为“patch”
# domain = "patch" # 微调v1.1环境的地址(lite)
domain = "patchv3" # 微调v3.1环境的地址(pro)
#云端环境的服务地址
# Spark_url = "wss://spark-api-n.xf-yun.com/v1.1/chat" # 微调v1.1环境的地址
Spark_url = "wss://spark-api-n.xf-yun.com/v3.1/chat" # 微调v3.1环境的地址
6、补充
WebSocket协议通用鉴权URL生成说明
WebSocket协议通用鉴权URL生成说明 | 讯飞开放平台文档中心
import hashlib
import base64
from urllib.parse import urlencode
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessagedef get_authentication():APIKey = 'MWQ2Og2IxNTJjOWI5MDMyNjMx'APISecret = '776261842a1e6413b53f31bf0'date = format_date_time(mktime(datetime.now().timetuple()))tmp_info = f"wss://spark-api.xf-yun.com/\ndate :{date}\nGET /v3.5/chat HTTP/1.1"tmp_sha = hmac.new(APISecret.encode('utf-8'), tmp_info.encode('utf-8'), digestmod=hashlib.sha256).digest()signature = base64.b64encode(tmp_sha).decode(encoding='utf-8')authorization_origin = f"api_key='{APIKey}', algorithm='hmac-sha256', headers='host date request-line', signature='{signature}'"v = {"authorization": authorization_origin, # 上方鉴权生成的authorization"date": date, # 步骤1生成的date"host": "spark-api.xf-yun.com" # 请求的主机名,根据具体接口替换}url = "wss://spark-api.xf-yun.com/v3.5/chat?" + urlencode(v)return url
相关文章:
Langchain+讯飞星火大模型Spark Max调用
1、安装langchain #安装langchain环境 pip install langchain0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple #灵积模型服务 pip install dashscope -i https://mirrors.aliyun.com/pypi/simple #安装第三方集成,就是各种大语言模型 pip install langchain-comm…...
TensorFlow实现逻辑回归模型
逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将介绍如何使用TensorFlow框架实现逻辑回归模型,并通过动态绘制决策边界和损失曲线来直观地观察模型的训练过程。 数据准备 首先,我们准备两类数据点,分别表示两个不同…...
C++进阶课程第2期——排列与组合1
大家好,我是清墨,欢迎收看《C进阶课程——排列与组合》。 啊,上一期我们的情况啊也是非常好的,今天直接开始! 排列(Arrange) 与上期一样啊,我们先了解一下排列的概念。 排列是指将…...
C++17 std::variant 详解:概念、用法和实现细节
文章目录 简介基本概念定义和使用std::variant与传统联合体union的区别 多类型值存储示例初始化修改判断variant中对应类型是否有值获取std::variant中的值获取当前使用的type在variant声明中的索引 访问std::variant中的值使用std::get使用std::get_if 错误处理和访问未初始化…...
Leetcode::119. 杨辉三角 II
119. 杨辉三角 II 已解答 简单 相关标签 相关企业 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0…...
多模态论文笔记——TECO
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细解读多模态论文TECO(Temporally Consistent Transformer),即时间一致变换器,是一种用于视频生成的创新模型&…...
Ubuntu 16.04用APT安装MySQL
个人博客地址:Ubuntu 16.04用APT安装MySQL | 一张假钞的真实世界 安装MySQL 用以下命令安装MySQL: sudo apt-get install mysql-server 这个命令会安装MySQL服务器、客户端和公共文件。安装过程会出现两个要求输入的对话框: 输入MySQL root用户的密…...
Linux 4.19内核中的内存管理:x86_64架构下的实现与源码解析
在现代操作系统中,内存管理是核心功能之一,它直接影响系统的性能、稳定性和多任务处理能力。Linux 内核在 x86_64 架构下,通过复杂的机制实现了高效的内存管理,涵盖了虚拟内存、分页机制、内存分配、内存映射、内存保护、缓存管理等多个方面。本文将深入探讨这些机制,并结…...
JavaScript逆向高阶指南:突破基础,掌握核心逆向技术
JavaScript逆向高阶指南:突破基础,掌握核心逆向技术 JavaScript逆向工程是Web开发者和安全分析师的核心竞争力。无论是解析混淆代码、分析压缩脚本,还是逆向Web应用架构,掌握高阶逆向技术都将助您深入理解复杂JavaScript逻辑。本…...
嵌入式知识点总结 Linux驱动 (四)-中断-软硬中断-上下半部-中断响应
针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.硬中断,软中断是什么?有什么区别? 2.中断为什么要区分上半部和下半部? 3.中断下半部一般如何实现? 4.linux中断的…...
在ubuntu下一键安装 Open WebUI
该脚本用于自动化安装 Open WebUI,并支持以下功能: 可选跳过 Ollama 安装:通过 --no-ollama 参数跳过 Ollama 的安装。自动清理旧目录:如果安装目录 (~/open-webui) 已存在,脚本会自动删除旧目录并重新安装。完整的依…...
c语言网 1127 尼科彻斯定理
原题 题目描述 验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。 输入格式 任一正整数 输出格式 该数的立方分解为一串连续奇数的和 样例输入 13 样例输出 13*13*132197157159161163165167169171173175177179181 #include<ios…...
Cloudflare通过代理服务器绕过 CORS 限制:原理、实现场景解析
第一部分:问题背景 1.1 错误现象复现 // 浏览器控制台报错示例 Access to fetch at https://chat.qwenlm.ai/api/v1/files/ from origin https://ocr.doublefenzhuan.me has been blocked by CORS policy: Response to preflight request doesnt pass access con…...
吴恩达深度学习——如何实现神经网络
来自吴恩达深度学习,仅为本人学习所用。 文章目录 神经网络的表示计算神经网络的输出激活函数tanh选择激活函数为什么需要非激活函数双层神经网络的梯度下降法 随机初始化 神经网络的表示 对于简单的Logistic回归,使用如下的计算图。 如果是多个神经元…...
《STL基础之vector、list、deque》
【vector、list、deque导读】vector、list、deque这三种序列式的容器,算是比较的基础容器,也是大家在日常开发中常用到的容器,因为底层用到的数据结构比较简单,笔者就将他们三者放到一起做下对比分析,介绍下基本用法&a…...
LockSupport概述、阻塞方法park、唤醒方法unpark(thread)、解决的痛点、带来的面试题
目录 ①. 什么是LockSupport? ②. 阻塞方法 ③. 唤醒方法(注意这个permit最多只能为1) ④. LockSupport它的解决的痛点 ⑤. LockSupport 面试题目 ①. 什么是LockSupport? ①. 通过park()和unpark(thread)方法来实现阻塞和唤醒线程的操作 ②. LockSupport是一个线程阻塞…...
Android开发基础知识
1 什么是Android? Android(读音:英:[ndrɔɪd],美:[ˈnˌdrɔɪd]),常见的非官方中文名称为安卓,是一个基于Linux内核的开放源代码移动操作系统,由Google成立…...
C++ Lambda 表达式的本质及原理分析
目录 1.引言 2.Lambda 的本质 3.Lambda 的捕获机制的本质 4.捕获方式的实现与底层原理 5.默认捕获的实现原理 6.捕获 this 的机制 7.捕获的限制与注意事项 8.总结 1.引言 C 中的 Lambda 表达式是一种匿名函数,最早在 C11 引入,用于简化函数对象的…...
《多线程基础之条件变量》
【条件变量导读】条件变量是多线程中比较灵活而且容易出错的线程同步手段,比如:虚假唤醒、为啥条件变量要和互斥锁结合使用?windows和linux双平台下,初始化、等待条件变量的api一样吗? 本文将分别为您介绍条件变量在w…...
21款炫酷烟花合集
系列专栏 《Python趣味编程》《C/C趣味编程》《HTML趣味编程》《Java趣味编程》 写在前面 Python、C/C、HTML、Java等4种语言实现18款炫酷烟花的代码。 Python Python烟花① 完整代码:Python动漫烟花(完整代码) Python烟花② 完整…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
数据库——redis
一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...
结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...

