当前位置: 首页 > news >正文

Langchain+讯飞星火大模型Spark Max调用

1、安装langchain

#安装langchain环境
pip install langchain==0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple 
#灵积模型服务
pip install dashscope -i https://mirrors.aliyun.com/pypi/simple   
#安装第三方集成,就是各种大语言模型
pip install langchain-community==0.3.2 -i https://mirrors.aliyun.com/pypi/simple 
#加载环境的工具  
pip install python-dotenv 

2、前期准备工作

第一个准备工作:Websocket服务接口认证信息

传送门:讯飞开放平台-以语音交互为核心的人工智能开放平台

2.1.登录或者注册

2.2 创建建新应用

2.3 领取tokens 

选择自己想要的模型,免费领tokens 

2.4 申请免费token 

2.5查看Tokens

返回“控制台”,打开自己的应用,并选择刚购买的模型,就可以看到tokens已下发

3、调用模型api

调用模型api,使用tokens 

3.1 查看API密钥

在“我的应用”中查看申请的应用,找到"APPID","APISecret","APIKey"

3.2 调用实例

查看调用实例:星火认知大模型Web API文档 | 讯飞开放平台文档中心

 4、编码实现

4.1 使用langchain

import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.llms import SparkLLM
load_dotenv(find_dotenv())os.environ["IFLYTEK_SPARK_APP_ID"] = "ba04ca"
os.environ["IFLYTEK_SPARK_API_KEY"] = "YzhGNjMDBmMjVhMmQmFjNWIxM4"
os.environ["IFLYTEK_SPARK_API_SECRET"] = "6647142991bebde80fa4d4127a"llm_spark = SparkLLM()
res = llm_spark.invoke("中国国庆日是哪一天?")
print(res)

4.2、使用sparkAi

pip install --upgrade spark_ai_python
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage#星火认知大模型Spark Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = 'ba04ca'
SPARKAI_API_SECRET = '6647142991bebde80fa4d4127a'
SPARKAI_API_KEY = 'YzhGNjMDBmMjVhMmQmFjNWIxM4'
#星火认知大模型Spark Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'if __name__ == '__main__':spark = ChatSparkLLM(spark_api_url=SPARKAI_URL,spark_app_id=SPARKAI_APP_ID,spark_api_key=SPARKAI_API_KEY,spark_api_secret=SPARKAI_API_SECRET,spark_llm_domain=SPARKAI_DOMAIN,streaming=False,)messages = [ChatMessage(role="user",content='你好呀')]handler = ChunkPrintHandler()a = spark.generate([messages], callbacks=[handler])print(a)

5、常见错误

5.1、报错信息:

APPID错误:

Error Code: 10005, Error: InvalidParamError:(...) app_id is not same to kong app_id

APISecret错误:

Handshake status 401 Unauthorized ... b'{"message":"HMAC signature does not match"}'

APIKey错误:

Handshake status 401 Unauthorized ... b'{"message":"HMAC signature cannot be verified: fail to retrieve credential"}'

解决方案:检测是否填写正确,是否填反信息,例如APISecret和APIKey填反了。

5.2、报错信息:

Error Code: 11200, Error: AppIdNoAuthError:(...) tokens.total

原因1:token不足

排查:检查token(Spark Max)控制台-讯飞开放平台

原因2:调用的模型版本错误(微调中出现)

排查与解决:检查你的domain和Spark_url值,是不是和模型版本对应,修改即可 

#调用微调大模型时,设置为“patch”
# domain = "patch"  # 微调v1.1环境的地址(lite)
domain = "patchv3"  # 微调v3.1环境的地址(pro)
 
#云端环境的服务地址
# Spark_url = "wss://spark-api-n.xf-yun.com/v1.1/chat"  # 微调v1.1环境的地址
Spark_url = "wss://spark-api-n.xf-yun.com/v3.1/chat"  # 微调v3.1环境的地址

6、补充

WebSocket协议通用鉴权URL生成说明

WebSocket协议通用鉴权URL生成说明 | 讯飞开放平台文档中心

import hashlib
import base64
from urllib.parse import urlencode
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessagedef get_authentication():APIKey = 'MWQ2Og2IxNTJjOWI5MDMyNjMx'APISecret = '776261842a1e6413b53f31bf0'date = format_date_time(mktime(datetime.now().timetuple()))tmp_info = f"wss://spark-api.xf-yun.com/\ndate :{date}\nGET /v3.5/chat HTTP/1.1"tmp_sha = hmac.new(APISecret.encode('utf-8'), tmp_info.encode('utf-8'), digestmod=hashlib.sha256).digest()signature = base64.b64encode(tmp_sha).decode(encoding='utf-8')authorization_origin = f"api_key='{APIKey}', algorithm='hmac-sha256', headers='host date request-line', signature='{signature}'"v = {"authorization": authorization_origin,  # 上方鉴权生成的authorization"date": date,  # 步骤1生成的date"host": "spark-api.xf-yun.com"  # 请求的主机名,根据具体接口替换}url = "wss://spark-api.xf-yun.com/v3.5/chat?" + urlencode(v)return url

 

相关文章:

Langchain+讯飞星火大模型Spark Max调用

1、安装langchain #安装langchain环境 pip install langchain0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple #灵积模型服务 pip install dashscope -i https://mirrors.aliyun.com/pypi/simple #安装第三方集成,就是各种大语言模型 pip install langchain-comm…...

TensorFlow实现逻辑回归模型

逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将介绍如何使用TensorFlow框架实现逻辑回归模型,并通过动态绘制决策边界和损失曲线来直观地观察模型的训练过程。 数据准备 首先,我们准备两类数据点,分别表示两个不同…...

C++进阶课程第2期——排列与组合1

大家好,我是清墨,欢迎收看《C进阶课程——排列与组合》。 啊,上一期我们的情况啊也是非常好的,今天直接开始! 排列(Arrange) 与上期一样啊,我们先了解一下排列的概念。 排列是指将…...

C++17 std::variant 详解:概念、用法和实现细节

文章目录 简介基本概念定义和使用std::variant与传统联合体union的区别 多类型值存储示例初始化修改判断variant中对应类型是否有值获取std::variant中的值获取当前使用的type在variant声明中的索引 访问std::variant中的值使用std::get使用std::get_if 错误处理和访问未初始化…...

Leetcode::119. 杨辉三角 II

119. 杨辉三角 II 已解答 简单 相关标签 相关企业 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0…...

多模态论文笔记——TECO

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细解读多模态论文TECO(Temporally Consistent Transformer),即时间一致变换器,是一种用于视频生成的创新模型&…...

Ubuntu 16.04用APT安装MySQL

个人博客地址:Ubuntu 16.04用APT安装MySQL | 一张假钞的真实世界 安装MySQL 用以下命令安装MySQL: sudo apt-get install mysql-server 这个命令会安装MySQL服务器、客户端和公共文件。安装过程会出现两个要求输入的对话框: 输入MySQL root用户的密…...

Linux 4.19内核中的内存管理:x86_64架构下的实现与源码解析

在现代操作系统中,内存管理是核心功能之一,它直接影响系统的性能、稳定性和多任务处理能力。Linux 内核在 x86_64 架构下,通过复杂的机制实现了高效的内存管理,涵盖了虚拟内存、分页机制、内存分配、内存映射、内存保护、缓存管理等多个方面。本文将深入探讨这些机制,并结…...

JavaScript逆向高阶指南:突破基础,掌握核心逆向技术

JavaScript逆向高阶指南:突破基础,掌握核心逆向技术 JavaScript逆向工程是Web开发者和安全分析师的核心竞争力。无论是解析混淆代码、分析压缩脚本,还是逆向Web应用架构,掌握高阶逆向技术都将助您深入理解复杂JavaScript逻辑。本…...

嵌入式知识点总结 Linux驱动 (四)-中断-软硬中断-上下半部-中断响应

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.硬中断,软中断是什么?有什么区别? 2.中断为什么要区分上半部和下半部? 3.中断下半部一般如何实现? 4.linux中断的…...

在ubuntu下一键安装 Open WebUI

该脚本用于自动化安装 Open WebUI,并支持以下功能: 可选跳过 Ollama 安装:通过 --no-ollama 参数跳过 Ollama 的安装。自动清理旧目录:如果安装目录 (~/open-webui) 已存在,脚本会自动删除旧目录并重新安装。完整的依…...

c语言网 1127 尼科彻斯定理

原题 题目描述 验证尼科彻斯定理&#xff0c;即&#xff1a;任何一个整数m的立方都可以写成m个连续奇数之和。 输入格式 任一正整数 输出格式 该数的立方分解为一串连续奇数的和 样例输入 13 样例输出 13*13*132197157159161163165167169171173175177179181 ​ #include<ios…...

Cloudflare通过代理服务器绕过 CORS 限制:原理、实现场景解析

第一部分&#xff1a;问题背景 1.1 错误现象复现 // 浏览器控制台报错示例 Access to fetch at https://chat.qwenlm.ai/api/v1/files/ from origin https://ocr.doublefenzhuan.me has been blocked by CORS policy: Response to preflight request doesnt pass access con…...

吴恩达深度学习——如何实现神经网络

来自吴恩达深度学习&#xff0c;仅为本人学习所用。 文章目录 神经网络的表示计算神经网络的输出激活函数tanh选择激活函数为什么需要非激活函数双层神经网络的梯度下降法 随机初始化 神经网络的表示 对于简单的Logistic回归&#xff0c;使用如下的计算图。 如果是多个神经元…...

《STL基础之vector、list、deque》

【vector、list、deque导读】vector、list、deque这三种序列式的容器&#xff0c;算是比较的基础容器&#xff0c;也是大家在日常开发中常用到的容器&#xff0c;因为底层用到的数据结构比较简单&#xff0c;笔者就将他们三者放到一起做下对比分析&#xff0c;介绍下基本用法&a…...

LockSupport概述、阻塞方法park、唤醒方法unpark(thread)、解决的痛点、带来的面试题

目录 ①. 什么是LockSupport? ②. 阻塞方法 ③. 唤醒方法(注意这个permit最多只能为1) ④. LockSupport它的解决的痛点 ⑤. LockSupport 面试题目 ①. 什么是LockSupport? ①. 通过park()和unpark(thread)方法来实现阻塞和唤醒线程的操作 ②. LockSupport是一个线程阻塞…...

Android开发基础知识

1 什么是Android&#xff1f; Android&#xff08;读音&#xff1a;英&#xff1a;[ndrɔɪd]&#xff0c;美&#xff1a;[ˈnˌdrɔɪd]&#xff09;&#xff0c;常见的非官方中文名称为安卓&#xff0c;是一个基于Linux内核的开放源代码移动操作系统&#xff0c;由Google成立…...

C++ Lambda 表达式的本质及原理分析

目录 1.引言 2.Lambda 的本质 3.Lambda 的捕获机制的本质 4.捕获方式的实现与底层原理 5.默认捕获的实现原理 6.捕获 this 的机制 7.捕获的限制与注意事项 8.总结 1.引言 C 中的 Lambda 表达式是一种匿名函数&#xff0c;最早在 C11 引入&#xff0c;用于简化函数对象的…...

《多线程基础之条件变量》

【条件变量导读】条件变量是多线程中比较灵活而且容易出错的线程同步手段&#xff0c;比如&#xff1a;虚假唤醒、为啥条件变量要和互斥锁结合使用&#xff1f;windows和linux双平台下&#xff0c;初始化、等待条件变量的api一样吗&#xff1f; 本文将分别为您介绍条件变量在w…...

21款炫酷烟花合集

系列专栏 《Python趣味编程》《C/C趣味编程》《HTML趣味编程》《Java趣味编程》 写在前面 Python、C/C、HTML、Java等4种语言实现18款炫酷烟花的代码。 Python Python烟花① 完整代码&#xff1a;Python动漫烟花&#xff08;完整代码&#xff09; ​ Python烟花② 完整…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...