Langchain+讯飞星火大模型Spark Max调用
1、安装langchain
#安装langchain环境
pip install langchain==0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple
#灵积模型服务
pip install dashscope -i https://mirrors.aliyun.com/pypi/simple
#安装第三方集成,就是各种大语言模型
pip install langchain-community==0.3.2 -i https://mirrors.aliyun.com/pypi/simple
#加载环境的工具
pip install python-dotenv
2、前期准备工作
第一个准备工作:Websocket服务接口认证信息
传送门:讯飞开放平台-以语音交互为核心的人工智能开放平台
2.1.登录或者注册

2.2 创建建新应用
2.3 领取tokens
选择自己想要的模型,免费领tokens
2.4 申请免费token
2.5查看Tokens
返回“控制台”,打开自己的应用,并选择刚购买的模型,就可以看到tokens已下发
3、调用模型api
调用模型api,使用tokens
3.1 查看API密钥
在“我的应用”中查看申请的应用,找到"APPID","APISecret","APIKey"
3.2 调用实例
查看调用实例:星火认知大模型Web API文档 | 讯飞开放平台文档中心
4、编码实现
4.1 使用langchain
import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.llms import SparkLLM
load_dotenv(find_dotenv())os.environ["IFLYTEK_SPARK_APP_ID"] = "ba04ca"
os.environ["IFLYTEK_SPARK_API_KEY"] = "YzhGNjMDBmMjVhMmQmFjNWIxM4"
os.environ["IFLYTEK_SPARK_API_SECRET"] = "6647142991bebde80fa4d4127a"llm_spark = SparkLLM()
res = llm_spark.invoke("中国国庆日是哪一天?")
print(res)
4.2、使用sparkAi
pip install --upgrade spark_ai_python
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage#星火认知大模型Spark Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = 'ba04ca'
SPARKAI_API_SECRET = '6647142991bebde80fa4d4127a'
SPARKAI_API_KEY = 'YzhGNjMDBmMjVhMmQmFjNWIxM4'
#星火认知大模型Spark Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'if __name__ == '__main__':spark = ChatSparkLLM(spark_api_url=SPARKAI_URL,spark_app_id=SPARKAI_APP_ID,spark_api_key=SPARKAI_API_KEY,spark_api_secret=SPARKAI_API_SECRET,spark_llm_domain=SPARKAI_DOMAIN,streaming=False,)messages = [ChatMessage(role="user",content='你好呀')]handler = ChunkPrintHandler()a = spark.generate([messages], callbacks=[handler])print(a)
5、常见错误
5.1、报错信息:
APPID错误:
Error Code: 10005, Error: InvalidParamError:(...) app_id is not same to kong app_id
APISecret错误:
Handshake status 401 Unauthorized ... b'{"message":"HMAC signature does not match"}'
APIKey错误:
Handshake status 401 Unauthorized ... b'{"message":"HMAC signature cannot be verified: fail to retrieve credential"}'
解决方案:检测是否填写正确,是否填反信息,例如APISecret和APIKey填反了。
5.2、报错信息:
Error Code: 11200, Error: AppIdNoAuthError:(...) tokens.total
排查:检查token(Spark Max)控制台-讯飞开放平台
原因2:调用的模型版本错误(微调中出现)
排查与解决:检查你的domain和Spark_url值,是不是和模型版本对应,修改即可
#调用微调大模型时,设置为“patch”
# domain = "patch" # 微调v1.1环境的地址(lite)
domain = "patchv3" # 微调v3.1环境的地址(pro)
#云端环境的服务地址
# Spark_url = "wss://spark-api-n.xf-yun.com/v1.1/chat" # 微调v1.1环境的地址
Spark_url = "wss://spark-api-n.xf-yun.com/v3.1/chat" # 微调v3.1环境的地址
6、补充
WebSocket协议通用鉴权URL生成说明
WebSocket协议通用鉴权URL生成说明 | 讯飞开放平台文档中心
import hashlib
import base64
from urllib.parse import urlencode
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessagedef get_authentication():APIKey = 'MWQ2Og2IxNTJjOWI5MDMyNjMx'APISecret = '776261842a1e6413b53f31bf0'date = format_date_time(mktime(datetime.now().timetuple()))tmp_info = f"wss://spark-api.xf-yun.com/\ndate :{date}\nGET /v3.5/chat HTTP/1.1"tmp_sha = hmac.new(APISecret.encode('utf-8'), tmp_info.encode('utf-8'), digestmod=hashlib.sha256).digest()signature = base64.b64encode(tmp_sha).decode(encoding='utf-8')authorization_origin = f"api_key='{APIKey}', algorithm='hmac-sha256', headers='host date request-line', signature='{signature}'"v = {"authorization": authorization_origin, # 上方鉴权生成的authorization"date": date, # 步骤1生成的date"host": "spark-api.xf-yun.com" # 请求的主机名,根据具体接口替换}url = "wss://spark-api.xf-yun.com/v3.5/chat?" + urlencode(v)return url
相关文章:

Langchain+讯飞星火大模型Spark Max调用
1、安装langchain #安装langchain环境 pip install langchain0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple #灵积模型服务 pip install dashscope -i https://mirrors.aliyun.com/pypi/simple #安装第三方集成,就是各种大语言模型 pip install langchain-comm…...

TensorFlow实现逻辑回归模型
逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将介绍如何使用TensorFlow框架实现逻辑回归模型,并通过动态绘制决策边界和损失曲线来直观地观察模型的训练过程。 数据准备 首先,我们准备两类数据点,分别表示两个不同…...

C++进阶课程第2期——排列与组合1
大家好,我是清墨,欢迎收看《C进阶课程——排列与组合》。 啊,上一期我们的情况啊也是非常好的,今天直接开始! 排列(Arrange) 与上期一样啊,我们先了解一下排列的概念。 排列是指将…...

C++17 std::variant 详解:概念、用法和实现细节
文章目录 简介基本概念定义和使用std::variant与传统联合体union的区别 多类型值存储示例初始化修改判断variant中对应类型是否有值获取std::variant中的值获取当前使用的type在variant声明中的索引 访问std::variant中的值使用std::get使用std::get_if 错误处理和访问未初始化…...

Leetcode::119. 杨辉三角 II
119. 杨辉三角 II 已解答 简单 相关标签 相关企业 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0…...

多模态论文笔记——TECO
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细解读多模态论文TECO(Temporally Consistent Transformer),即时间一致变换器,是一种用于视频生成的创新模型&…...
Ubuntu 16.04用APT安装MySQL
个人博客地址:Ubuntu 16.04用APT安装MySQL | 一张假钞的真实世界 安装MySQL 用以下命令安装MySQL: sudo apt-get install mysql-server 这个命令会安装MySQL服务器、客户端和公共文件。安装过程会出现两个要求输入的对话框: 输入MySQL root用户的密…...
Linux 4.19内核中的内存管理:x86_64架构下的实现与源码解析
在现代操作系统中,内存管理是核心功能之一,它直接影响系统的性能、稳定性和多任务处理能力。Linux 内核在 x86_64 架构下,通过复杂的机制实现了高效的内存管理,涵盖了虚拟内存、分页机制、内存分配、内存映射、内存保护、缓存管理等多个方面。本文将深入探讨这些机制,并结…...
JavaScript逆向高阶指南:突破基础,掌握核心逆向技术
JavaScript逆向高阶指南:突破基础,掌握核心逆向技术 JavaScript逆向工程是Web开发者和安全分析师的核心竞争力。无论是解析混淆代码、分析压缩脚本,还是逆向Web应用架构,掌握高阶逆向技术都将助您深入理解复杂JavaScript逻辑。本…...

嵌入式知识点总结 Linux驱动 (四)-中断-软硬中断-上下半部-中断响应
针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.硬中断,软中断是什么?有什么区别? 2.中断为什么要区分上半部和下半部? 3.中断下半部一般如何实现? 4.linux中断的…...
在ubuntu下一键安装 Open WebUI
该脚本用于自动化安装 Open WebUI,并支持以下功能: 可选跳过 Ollama 安装:通过 --no-ollama 参数跳过 Ollama 的安装。自动清理旧目录:如果安装目录 (~/open-webui) 已存在,脚本会自动删除旧目录并重新安装。完整的依…...
c语言网 1127 尼科彻斯定理
原题 题目描述 验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。 输入格式 任一正整数 输出格式 该数的立方分解为一串连续奇数的和 样例输入 13 样例输出 13*13*132197157159161163165167169171173175177179181 #include<ios…...

Cloudflare通过代理服务器绕过 CORS 限制:原理、实现场景解析
第一部分:问题背景 1.1 错误现象复现 // 浏览器控制台报错示例 Access to fetch at https://chat.qwenlm.ai/api/v1/files/ from origin https://ocr.doublefenzhuan.me has been blocked by CORS policy: Response to preflight request doesnt pass access con…...

吴恩达深度学习——如何实现神经网络
来自吴恩达深度学习,仅为本人学习所用。 文章目录 神经网络的表示计算神经网络的输出激活函数tanh选择激活函数为什么需要非激活函数双层神经网络的梯度下降法 随机初始化 神经网络的表示 对于简单的Logistic回归,使用如下的计算图。 如果是多个神经元…...

《STL基础之vector、list、deque》
【vector、list、deque导读】vector、list、deque这三种序列式的容器,算是比较的基础容器,也是大家在日常开发中常用到的容器,因为底层用到的数据结构比较简单,笔者就将他们三者放到一起做下对比分析,介绍下基本用法&a…...

LockSupport概述、阻塞方法park、唤醒方法unpark(thread)、解决的痛点、带来的面试题
目录 ①. 什么是LockSupport? ②. 阻塞方法 ③. 唤醒方法(注意这个permit最多只能为1) ④. LockSupport它的解决的痛点 ⑤. LockSupport 面试题目 ①. 什么是LockSupport? ①. 通过park()和unpark(thread)方法来实现阻塞和唤醒线程的操作 ②. LockSupport是一个线程阻塞…...

Android开发基础知识
1 什么是Android? Android(读音:英:[ndrɔɪd],美:[ˈnˌdrɔɪd]),常见的非官方中文名称为安卓,是一个基于Linux内核的开放源代码移动操作系统,由Google成立…...
C++ Lambda 表达式的本质及原理分析
目录 1.引言 2.Lambda 的本质 3.Lambda 的捕获机制的本质 4.捕获方式的实现与底层原理 5.默认捕获的实现原理 6.捕获 this 的机制 7.捕获的限制与注意事项 8.总结 1.引言 C 中的 Lambda 表达式是一种匿名函数,最早在 C11 引入,用于简化函数对象的…...

《多线程基础之条件变量》
【条件变量导读】条件变量是多线程中比较灵活而且容易出错的线程同步手段,比如:虚假唤醒、为啥条件变量要和互斥锁结合使用?windows和linux双平台下,初始化、等待条件变量的api一样吗? 本文将分别为您介绍条件变量在w…...

21款炫酷烟花合集
系列专栏 《Python趣味编程》《C/C趣味编程》《HTML趣味编程》《Java趣味编程》 写在前面 Python、C/C、HTML、Java等4种语言实现18款炫酷烟花的代码。 Python Python烟花① 完整代码:Python动漫烟花(完整代码) Python烟花② 完整…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...

aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...