当前位置: 首页 > news >正文

Langchain+讯飞星火大模型Spark Max调用

1、安装langchain

#安装langchain环境
pip install langchain==0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple 
#灵积模型服务
pip install dashscope -i https://mirrors.aliyun.com/pypi/simple   
#安装第三方集成,就是各种大语言模型
pip install langchain-community==0.3.2 -i https://mirrors.aliyun.com/pypi/simple 
#加载环境的工具  
pip install python-dotenv 

2、前期准备工作

第一个准备工作:Websocket服务接口认证信息

传送门:讯飞开放平台-以语音交互为核心的人工智能开放平台

2.1.登录或者注册

2.2 创建建新应用

2.3 领取tokens 

选择自己想要的模型,免费领tokens 

2.4 申请免费token 

2.5查看Tokens

返回“控制台”,打开自己的应用,并选择刚购买的模型,就可以看到tokens已下发

3、调用模型api

调用模型api,使用tokens 

3.1 查看API密钥

在“我的应用”中查看申请的应用,找到"APPID","APISecret","APIKey"

3.2 调用实例

查看调用实例:星火认知大模型Web API文档 | 讯飞开放平台文档中心

 4、编码实现

4.1 使用langchain

import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.llms import SparkLLM
load_dotenv(find_dotenv())os.environ["IFLYTEK_SPARK_APP_ID"] = "ba04ca"
os.environ["IFLYTEK_SPARK_API_KEY"] = "YzhGNjMDBmMjVhMmQmFjNWIxM4"
os.environ["IFLYTEK_SPARK_API_SECRET"] = "6647142991bebde80fa4d4127a"llm_spark = SparkLLM()
res = llm_spark.invoke("中国国庆日是哪一天?")
print(res)

4.2、使用sparkAi

pip install --upgrade spark_ai_python
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage#星火认知大模型Spark Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = 'ba04ca'
SPARKAI_API_SECRET = '6647142991bebde80fa4d4127a'
SPARKAI_API_KEY = 'YzhGNjMDBmMjVhMmQmFjNWIxM4'
#星火认知大模型Spark Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'if __name__ == '__main__':spark = ChatSparkLLM(spark_api_url=SPARKAI_URL,spark_app_id=SPARKAI_APP_ID,spark_api_key=SPARKAI_API_KEY,spark_api_secret=SPARKAI_API_SECRET,spark_llm_domain=SPARKAI_DOMAIN,streaming=False,)messages = [ChatMessage(role="user",content='你好呀')]handler = ChunkPrintHandler()a = spark.generate([messages], callbacks=[handler])print(a)

5、常见错误

5.1、报错信息:

APPID错误:

Error Code: 10005, Error: InvalidParamError:(...) app_id is not same to kong app_id

APISecret错误:

Handshake status 401 Unauthorized ... b'{"message":"HMAC signature does not match"}'

APIKey错误:

Handshake status 401 Unauthorized ... b'{"message":"HMAC signature cannot be verified: fail to retrieve credential"}'

解决方案:检测是否填写正确,是否填反信息,例如APISecret和APIKey填反了。

5.2、报错信息:

Error Code: 11200, Error: AppIdNoAuthError:(...) tokens.total

原因1:token不足

排查:检查token(Spark Max)控制台-讯飞开放平台

原因2:调用的模型版本错误(微调中出现)

排查与解决:检查你的domain和Spark_url值,是不是和模型版本对应,修改即可 

#调用微调大模型时,设置为“patch”
# domain = "patch"  # 微调v1.1环境的地址(lite)
domain = "patchv3"  # 微调v3.1环境的地址(pro)
 
#云端环境的服务地址
# Spark_url = "wss://spark-api-n.xf-yun.com/v1.1/chat"  # 微调v1.1环境的地址
Spark_url = "wss://spark-api-n.xf-yun.com/v3.1/chat"  # 微调v3.1环境的地址

6、补充

WebSocket协议通用鉴权URL生成说明

WebSocket协议通用鉴权URL生成说明 | 讯飞开放平台文档中心

import hashlib
import base64
from urllib.parse import urlencode
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessagedef get_authentication():APIKey = 'MWQ2Og2IxNTJjOWI5MDMyNjMx'APISecret = '776261842a1e6413b53f31bf0'date = format_date_time(mktime(datetime.now().timetuple()))tmp_info = f"wss://spark-api.xf-yun.com/\ndate :{date}\nGET /v3.5/chat HTTP/1.1"tmp_sha = hmac.new(APISecret.encode('utf-8'), tmp_info.encode('utf-8'), digestmod=hashlib.sha256).digest()signature = base64.b64encode(tmp_sha).decode(encoding='utf-8')authorization_origin = f"api_key='{APIKey}', algorithm='hmac-sha256', headers='host date request-line', signature='{signature}'"v = {"authorization": authorization_origin,  # 上方鉴权生成的authorization"date": date,  # 步骤1生成的date"host": "spark-api.xf-yun.com"  # 请求的主机名,根据具体接口替换}url = "wss://spark-api.xf-yun.com/v3.5/chat?" + urlencode(v)return url

 

相关文章:

Langchain+讯飞星火大模型Spark Max调用

1、安装langchain #安装langchain环境 pip install langchain0.3.3 openai -i https://mirrors.aliyun.com/pypi/simple #灵积模型服务 pip install dashscope -i https://mirrors.aliyun.com/pypi/simple #安装第三方集成,就是各种大语言模型 pip install langchain-comm…...

TensorFlow实现逻辑回归模型

逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将介绍如何使用TensorFlow框架实现逻辑回归模型,并通过动态绘制决策边界和损失曲线来直观地观察模型的训练过程。 数据准备 首先,我们准备两类数据点,分别表示两个不同…...

C++进阶课程第2期——排列与组合1

大家好,我是清墨,欢迎收看《C进阶课程——排列与组合》。 啊,上一期我们的情况啊也是非常好的,今天直接开始! 排列(Arrange) 与上期一样啊,我们先了解一下排列的概念。 排列是指将…...

C++17 std::variant 详解:概念、用法和实现细节

文章目录 简介基本概念定义和使用std::variant与传统联合体union的区别 多类型值存储示例初始化修改判断variant中对应类型是否有值获取std::variant中的值获取当前使用的type在variant声明中的索引 访问std::variant中的值使用std::get使用std::get_if 错误处理和访问未初始化…...

Leetcode::119. 杨辉三角 II

119. 杨辉三角 II 已解答 简单 相关标签 相关企业 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0…...

多模态论文笔记——TECO

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细解读多模态论文TECO(Temporally Consistent Transformer),即时间一致变换器,是一种用于视频生成的创新模型&…...

Ubuntu 16.04用APT安装MySQL

个人博客地址:Ubuntu 16.04用APT安装MySQL | 一张假钞的真实世界 安装MySQL 用以下命令安装MySQL: sudo apt-get install mysql-server 这个命令会安装MySQL服务器、客户端和公共文件。安装过程会出现两个要求输入的对话框: 输入MySQL root用户的密…...

Linux 4.19内核中的内存管理:x86_64架构下的实现与源码解析

在现代操作系统中,内存管理是核心功能之一,它直接影响系统的性能、稳定性和多任务处理能力。Linux 内核在 x86_64 架构下,通过复杂的机制实现了高效的内存管理,涵盖了虚拟内存、分页机制、内存分配、内存映射、内存保护、缓存管理等多个方面。本文将深入探讨这些机制,并结…...

JavaScript逆向高阶指南:突破基础,掌握核心逆向技术

JavaScript逆向高阶指南:突破基础,掌握核心逆向技术 JavaScript逆向工程是Web开发者和安全分析师的核心竞争力。无论是解析混淆代码、分析压缩脚本,还是逆向Web应用架构,掌握高阶逆向技术都将助您深入理解复杂JavaScript逻辑。本…...

嵌入式知识点总结 Linux驱动 (四)-中断-软硬中断-上下半部-中断响应

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.硬中断,软中断是什么?有什么区别? 2.中断为什么要区分上半部和下半部? 3.中断下半部一般如何实现? 4.linux中断的…...

在ubuntu下一键安装 Open WebUI

该脚本用于自动化安装 Open WebUI,并支持以下功能: 可选跳过 Ollama 安装:通过 --no-ollama 参数跳过 Ollama 的安装。自动清理旧目录:如果安装目录 (~/open-webui) 已存在,脚本会自动删除旧目录并重新安装。完整的依…...

c语言网 1127 尼科彻斯定理

原题 题目描述 验证尼科彻斯定理&#xff0c;即&#xff1a;任何一个整数m的立方都可以写成m个连续奇数之和。 输入格式 任一正整数 输出格式 该数的立方分解为一串连续奇数的和 样例输入 13 样例输出 13*13*132197157159161163165167169171173175177179181 ​ #include<ios…...

Cloudflare通过代理服务器绕过 CORS 限制:原理、实现场景解析

第一部分&#xff1a;问题背景 1.1 错误现象复现 // 浏览器控制台报错示例 Access to fetch at https://chat.qwenlm.ai/api/v1/files/ from origin https://ocr.doublefenzhuan.me has been blocked by CORS policy: Response to preflight request doesnt pass access con…...

吴恩达深度学习——如何实现神经网络

来自吴恩达深度学习&#xff0c;仅为本人学习所用。 文章目录 神经网络的表示计算神经网络的输出激活函数tanh选择激活函数为什么需要非激活函数双层神经网络的梯度下降法 随机初始化 神经网络的表示 对于简单的Logistic回归&#xff0c;使用如下的计算图。 如果是多个神经元…...

《STL基础之vector、list、deque》

【vector、list、deque导读】vector、list、deque这三种序列式的容器&#xff0c;算是比较的基础容器&#xff0c;也是大家在日常开发中常用到的容器&#xff0c;因为底层用到的数据结构比较简单&#xff0c;笔者就将他们三者放到一起做下对比分析&#xff0c;介绍下基本用法&a…...

LockSupport概述、阻塞方法park、唤醒方法unpark(thread)、解决的痛点、带来的面试题

目录 ①. 什么是LockSupport? ②. 阻塞方法 ③. 唤醒方法(注意这个permit最多只能为1) ④. LockSupport它的解决的痛点 ⑤. LockSupport 面试题目 ①. 什么是LockSupport? ①. 通过park()和unpark(thread)方法来实现阻塞和唤醒线程的操作 ②. LockSupport是一个线程阻塞…...

Android开发基础知识

1 什么是Android&#xff1f; Android&#xff08;读音&#xff1a;英&#xff1a;[ndrɔɪd]&#xff0c;美&#xff1a;[ˈnˌdrɔɪd]&#xff09;&#xff0c;常见的非官方中文名称为安卓&#xff0c;是一个基于Linux内核的开放源代码移动操作系统&#xff0c;由Google成立…...

C++ Lambda 表达式的本质及原理分析

目录 1.引言 2.Lambda 的本质 3.Lambda 的捕获机制的本质 4.捕获方式的实现与底层原理 5.默认捕获的实现原理 6.捕获 this 的机制 7.捕获的限制与注意事项 8.总结 1.引言 C 中的 Lambda 表达式是一种匿名函数&#xff0c;最早在 C11 引入&#xff0c;用于简化函数对象的…...

《多线程基础之条件变量》

【条件变量导读】条件变量是多线程中比较灵活而且容易出错的线程同步手段&#xff0c;比如&#xff1a;虚假唤醒、为啥条件变量要和互斥锁结合使用&#xff1f;windows和linux双平台下&#xff0c;初始化、等待条件变量的api一样吗&#xff1f; 本文将分别为您介绍条件变量在w…...

21款炫酷烟花合集

系列专栏 《Python趣味编程》《C/C趣味编程》《HTML趣味编程》《Java趣味编程》 写在前面 Python、C/C、HTML、Java等4种语言实现18款炫酷烟花的代码。 Python Python烟花① 完整代码&#xff1a;Python动漫烟花&#xff08;完整代码&#xff09; ​ Python烟花② 完整…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

python打卡第47天

昨天代码中注意力热图的部分顺移至今天 知识点回顾&#xff1a; 热力图 作业&#xff1a;对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图&#xff0c;展示模…...