当前位置: 首页 > news >正文

算法随笔_35: 每日温度

上一篇:算法随笔_34: 最后一个单词的长度-CSDN博客

=====

题目描述如下:

给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。

示例 1:

输入: temperatures = [73,74,75,71,69,72,76,73]
输出: [1,1,4,2,1,1,0,0]

=====

算法思路:

这道题的暴力解法是,我们从左往右枚举temperatures[i],对于每一个temperatures[i],我们用第二层循环再枚举它之后的元素,从而找到temperatures[i]的第一个更高的温度。第一层循环完成后,即可返回答案。

接下来我们探讨一个更高效的算法,单调栈解法。为了方便描述,下面我们用tp代替temperatures数组,res表示answer数组。我们用一个示例来解析一下算法背后的原理。我们假设tp有15个元素。让我们从左往右开始枚举数组。

1.  如果tp[1]大于tp[0],我们就找到了tp[0]的答案。

2.  如果tp[1]小于tp[0],我们需要查看tp[2],如果tp[2]大于tp[1],此时我们就找到了tp[1]的答案为tp[2]。

3.  如果tp[2]也大于tp[0],那么我们也找到了tp[0]的答案为tp[2]。

经过上面这3步的分析,我们发现当温度连续递减的时候,这些被访问过的元素都还没找到它们对应的答案。当递减之后温度第一次升高时如tp[5]。我们可以从右往左对于访问过的元素tp[0],tp[1],tp[2],tp[3],tp[4]再一次比较。此时可以依次找到部分元素的答案,直到tp[5]小于某个已经访问过的元素为止。

根据此特征,我们可以使用单调栈的思路来解决此问题。具体的算法如下:

1.  我们设一个临时数组stck做为单调栈,stck初始元素为0。设结果数组res,它的长度和tp数组一样,初始每个元素为0。然后从左往右枚举数组tp。

2.  如果温度保持递减趋势,我们把元素下标不断的放入数组stck中,直到碰到第一次升高,比如tp[i]。

3.  我们用tp[i]和stck的末尾元素,即stck[-1],比较。如果stck[-1]小于元素tp[i],我们计算两个下标的距离,并存入res数组对应的位置。然后弹出stck[-1]。重复步骤3,直到碰到stck[-1]大于tp[i],我们把下标i放入stck中。

4. 继续枚举tp[i+1],转到步骤3。直到枚举完数组tp。

如果stck中仍有元素,说明这些元素不能找到更高的温度。相应的res位置因为初始值就为0,所以无需处理这些元素。

此算法的时间复杂度为O(n) 。下面是代码实现:

class Solution(object):def dailyTemperatures(self, temperatures):""":type temperatures: List[int]:rtype: List[int]"""tp_len=len(temperatures)stck=[0]res=[0]*tp_lenfor i in range(1,tp_len):while len(stck)>0 and temperatures[i]>temperatures[stck[-1]]:res[stck[-1]]=i-stck[-1]stck.pop()stck.append(i)return res

相关文章:

算法随笔_35: 每日温度

上一篇:算法随笔_34: 最后一个单词的长度-CSDN博客 题目描述如下: 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升…...

嵌入式硬件篇---CPUGPUTPU

文章目录 第一部分:处理器CPU(中央处理器)1.通用性2.核心数3.缓存4.指令集5.功耗和发热 GPU(图形处理器)1.并行处理2.核心数量3.内存带宽4.专门的应用 TPU(张量处理单元)1.为深度学习定制2.低精…...

STM32 PWM驱动舵机

接线图: 这里将信号线连接到了开发板的PA1上 代码配置: 这里的PWM配置与呼吸灯一样,呼吸灯连接的是PA0引脚,输出比较单元用的是OC1通道,这里只需改为OC2通道即可。 完整代码: #include "servo.h&quo…...

设计心得——平衡和冗余

一、平衡 在前面分析了一些软件设计的基础和原则后,今天分析一下整体设计上的一些实践问题。首先分析一下设计上的平衡问题。平衡非常好理解,看到过天平或者标称的同学们应该都知道什么平衡。无论在哪个环境里,平衡都是稳定的基础。 既然说到…...

webrtc协议详细解释

### 一、概述与背景 WebRTC(Web Real-Time Communication)最早由 Google 在 2011 年开源,旨在为浏览器与移动端应用提供客户端直连(点对点)方式进行实时音视频及数据传输的能力。传统的网络应用在进行高实时性音视频通…...

动手学强化学习(四)——蒙特卡洛方法

一、蒙特卡洛方法 蒙特卡洛方法是一种无模型(Model-Free)的强化学习算法,它通过直接与环境交互采样轨迹(episodes)来估计状态或动作的价值函数(Value Function),而不需要依赖环境动态…...

网络原理(3)—— 传输层详解

目录 一. 再谈端口号 二. UDP协议(用户数据报协议) 2.1 UDP协议端格式 2.2 UDP报文长度 2.3 UDP校验和 三. TCP协议(传输控制协议) 3.1 TCP协议段格式 3.2 核心机制 3.2.1 确认应答 —— “感知对方是否收到” 3.2.2 超时重传 3.3.3 连接管理 —— 三次握手与四…...

2025美赛美国大学生数学建模竞赛A题完整思路分析论文(43页)(含模型、可运行代码和运行结果)

2025美国大学生数学建模竞赛A题完整思路分析论文 目录 摘要 一、问题重述 二、 问题分析 三、模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码(仅供参考) 4.1.4问题1样例代码运行结果&…...

Elasticsearch的开发工具(Dev Tools)

目录 说明1. **Console**2. **Search Profiler**3. **Grok Debugger**4. **Painless Lab**总结 说明 Elasticsearch的开发工具(Dev Tools)在Kibana中提供了多种功能强大的工具,用于调试、优化和测试Elasticsearch查询和脚本。以下是关于Cons…...

Python-基于PyQt5,pdf2docx,pathlib的PDF转Word工具

前言:日常生活中,我们常常会跟WPS Office打交道。作表格,写报告,写PPT......可以说,我们的生活已经离不开WPS Office了。与此同时,我们在这个过程中也会遇到各种各样的技术阻碍,例如部分软件的PDF转Word需要收取额外费用等。那么,可不可以自己开发一个小工具来实现PDF转…...

小程序-视图与逻辑

前言 1. 声明式导航 open-type"switchTab"如果没有写这个,因为是tabBar所以写这个,就无法跳转。路径开始也必须为斜线 open-type"navigate"这个可以不写 现在开始实现后退的效果 现在我们就在list页面里面实现后退 2.编程式导航…...

UE5制作视差图

双目深度估计开源数据集很多都是用UE制作的,那么我们自己能否通过UE制作自己想要的场景的数据集呢。最近花了点时间研究了一下,分享给需要的小伙伴。 主要使用的是UnrealCV插件,UnrealCV是一个开源项目,旨在帮助计算机视觉研究人…...

海浪波高预测(背景调研)

#新星杯14天创作挑战营第7期# ps:图片由通义千问生成 历史工作: 针对更高细粒度、更高精度的波浪高度预测任务: Mumtaz Ali 等人提出了一种多元线性回归模型(MLR-CWLS),该模型利用协方差加权最小二乘法&a…...

代码随想录算法训练营第四十二天-动态规划-股票-188.买卖股票的最佳时机IV

题目要求进行k次买卖其实就是上一题的扩展,把2次扩展为k次定义动规数组依然是二维,第一个维度表示第几天,第二个维度表示第几次买入和卖出所以第二个维度的长度应该是2k1在for循环内,要使用一个内循环来表示第几次买入或卖出&…...

Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)

文章目录 Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)settings.gradle.kts 基础配置选项单项目配置多项目配置 高级配置选项插件管理(Plugin Management)基础配置模板案例:Android项目标准配…...

软件工程经济学-日常作业+大作业

目录 一、作业1 作业内容 解答 二、作业2 作业内容 解答 三、作业3 作业内容 解答 四、大作业 作业内容 解答 1.建立层次结构模型 (1)目标层 (2)准则层 (3)方案层 2.构造判断矩阵 (1)准则层判断矩阵 (2)方案层判断矩阵 3.层次单排序及其一致性检验 代码 …...

论文阅读(三):微阵列数据的图形模型和多变量分析

1.论文链接:Graphical Models and Multivariate Analysis of Microarray Data 摘要: 基因表达数据的通常分析忽略了基因表达值之间的相关性。从生物学上讲,这种假设是不合理的。本章介绍的方法允许通过稀疏高斯图形模型来描述基因之间的相关…...

【大模型LLM面试合集】大语言模型架构_MHA_MQA_GQA

MHA_MQA_GQA 1.总结 在 MHA(Multi Head Attention) 中,每个头有自己单独的 key-value 对;标准的多头注意力机制,h个Query、Key 和 Value 矩阵。在 MQA(Multi Query Attention) 中只会有一组 k…...

向上调整算法(详解)c++

算法流程: 与⽗结点的权值作⽐较,如果⽐它⼤,就与⽗亲交换; 交换完之后,重复 1 操作,直到⽐⽗亲⼩,或者换到根节点的位置 这里为什么插入85完后合法? 我们插入一个85,…...

【Transformer】手撕Attention

import torch from torch import nn import torch.functional as F import mathX torch.randn(16,64,512) # B,T,Dd_model 512 # 模型的维度 n_head 8 # 注意力头的数量多头注意力机制 class multi_head_attention(nn.Module): def __init__(self, d_model, n_hea…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...