当前位置: 首页 > news >正文

Python Pandas(5):Pandas Excel 文件操作

        Pandas 提供了丰富的 Excel 文件操作功能,帮助我们方便地读取和写入 .xls 和 .xlsx 文件,支持多表单、索引、列选择等复杂操作,是数据分析中必备的工具。

操作方法说明
读取 Excel 文件pd.read_excel()读取 Excel 文件,返回 DataFrame
将 DataFrame 写入 ExcelDataFrame.to_excel()将 DataFrame 写入 Excel 文件
加载 Excel 文件pd.ExcelFile()加载 Excel 文件并访问多个表单
使用 ExcelWriter 写多个表单pd.ExcelWriter()写入多个 DataFrame 到同一 Excel 文件的不同表单

读取 Excel 文件

    pd.read_excel() 方法用于从 Excel 文件中读取数据并加载为 DataFrame。它支持读取 .xls 和 .xlsx 格式的文件。语法格式如下:

pandas.read_excel(io, sheet_name=0, *, header=0, names=None, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, parse_dates=False, date_parser=<no_default>, date_format=None, thousands=None, decimal='.', comment=None, skipfooter=0, storage_options=None, dtype_backend=<no_default>, engine_kwargs=None)
  • io:这是必需的参数,指定了要读取的 Excel 文件的路径或文件对象。
  • sheet_name=0:指定要读取的工作表名称或索引。默认为0,即第一个工作表。
  • header=0:指定用作列名的行。默认为0,即第一行。
  • names=None:用于指定列名的列表。如果提供,将覆盖文件中的列名。
  • index_col=None:指定用作行索引的列。可以是列的名称或数字。
  • usecols=None:指定要读取的列。可以是列名的列表或列索引的列表。
  • dtype=None:指定列的数据类型。可以是字典格式,键为列名,值为数据类型。
  • engine=None:指定解析引擎。默认为None,pandas 会自动选择。
  • converters=None:用于转换数据的函数字典。
  • true_values=None:指定应该被视为布尔值True的值。
  • false_values=None:指定应该被视为布尔值False的值。
  • skiprows=None:指定要跳过的行数或要跳过的行的列表。
  • nrows=None:指定要读取的行数。
  • na_values=None:指定应该被视为缺失值的值。
  • keep_default_na=True:指定是否要将默认的缺失值(例如NaN)解析为NA
  • na_filter=True:指定是否要将数据转换为NA
  • verbose=False:指定是否要输出详细的进度信息。
  • parse_dates=False:指定是否要解析日期。
  • date_parser=<no_default>:用于解析日期的函数。
  • date_format=None:指定日期的格式。
  • thousands=None:指定千位分隔符。
  • decimal='.':指定小数点字符。
  • comment=None:指定注释字符。
  • skipfooter=0:指定要跳过的文件末尾的行数。
  • storage_options=None:用于云存储的参数字典。
  • dtype_backend=<no_default>:指定数据类型后端。
  • engine_kwargs=None:传递给引擎的额外参数字典。

        本文以 runoob_pandas_data.xlsx 为例,下载链接:https://static.jyshare.com/download/runoob_pandas_data.xlsx

import pandas as pd# 读取 data.xlsx 文件
df = pd.read_excel('runoob_pandas_data.xlsx')# 打印读取的 DataFrame
print(df)

        read_excel 默认读取第一个表单(sheet_name=0),假设 data.xlsx 文件中只有一个表单,读取后的数据会存储在一个 DataFrame 中。如果 data.xlsx 文件中有多个表单,可以通过指定 sheet_name 来读取特定表单的数据,例如 pd.read_excel('data.xlsx', sheet_name='Sheet1')。

import pandas as pd# 读取默认的第一个表单
df = pd.read_excel('data.xlsx')
print(df)# 读取指定表单的内容(表单名称)
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
print(df)# 读取多个表单,返回一个字典
dfs = pd.read_excel('data.xlsx', sheet_name=['Sheet1', 'Sheet2'])
print(dfs)# 自定义列名并跳过前两行
df = pd.read_excel('data.xlsx', header=None, names=['A', 'B', 'C'], skiprows=2)
print(df)

2 将 DataFrame 写入 Excel 文件

    to_excel() 方法用于将 DataFrame 写入 Excel 文件,支持 .xls 和 .xlsx 格式。

DataFrame.to_excel(excel_writer, *, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, inf_rep='inf', freeze_panes=None, storage_options=None, engine_kwargs=None)
  • excel_writer:这是必需的参数,指定了要写入的 Excel 文件路径或文件对象。
  • sheet_name='Sheet1':指定写入的工作表名称,默认为 'Sheet1'
  • na_rep='':指定在 Excel 文件中表示缺失值(NaN)的字符串,默认为空字符串。
  • float_format=None:指定浮点数的格式。如果为 None,则使用 Excel 的默认格式。
  • columns=None:指定要写入的列。如果为 None,则写入所有列。
  • header=True:指定是否写入列名作为第一行。如果为 False,则不写入列名。
  • index=True:指定是否写入索引作为第一列。如果为 False,则不写入索引。
  • index_label=None:指定索引列的标签。如果为 None,则不写入索引标签。
  • startrow=0:指定开始写入的行号,默认从第0行开始。
  • startcol=0:指定开始写入的列号,默认从第0列开始。
  • engine=None:指定写入 Excel 文件时使用的引擎,默认为 None,pandas 会自动选择。
  • merge_cells=True:指定是否合并单元格。如果为 True,则合并具有相同值的单元格。
  • inf_rep='inf':指定在 Excel 文件中表示无穷大值的字符串,默认为 'inf'
  • freeze_panes=None:指定冻结窗格的位置。如果为 None,则不冻结窗格。
  • storage_options=None:用于云存储的参数字典。
  • engine_kwargs=None:传递给引擎的额外参数字典。
import pandas as pd# 创建一个简单的 DataFrame
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35],'City': ['New York', 'Los Angeles', 'Chicago']
})# 将 DataFrame 写入 Excel 文件,写入 'Sheet1' 表单
df.to_excel('output.xlsx', sheet_name='Sheet1', index=False)# 写入多个表单,使用 ExcelWriter
with pd.ExcelWriter('output.xlsx') as writer:df.to_excel(writer, sheet_name='Sheet1', index=False)
df.to_excel(writer, sheet_name='Sheet2', index=False)

3 加载 Excel 文件

    ExcelFile 是一个用于读取 Excel 文件的类,它可以处理多个表单,并在不重新打开文件的情况下访问其中的数据。

excel_file = pd.ExcelFile('data.xlsx')
方法功能描述
sheet_names返回文件中所有表单的名称列表
parse(sheet_name)解析指定表单并返回一个 DataFrame
close()关闭文件,以释放资源
import pandas as pd# 使用 ExcelFile 加载 Excel 文件
excel_file = pd.ExcelFile('data.xlsx')# 查看所有表单的名称
print(excel_file.sheet_names)# 读取指定的表单
df = excel_file.parse('Sheet1')
print(df)# 关闭文件
excel_file.close()

4 写入 Excel 文件

        ExcelWriter 是 pandas 提供的一个类,用于将 DataFrame 或 Series 对象写入 Excel 文件。使用 ExcelWriter,你可以在一个 Excel 文件中写入多个工作表,并且可以更灵活地控制写入过程。

pandas.ExcelWriter(path, engine=None, date_format=None, datetime_format=None, mode='w', storage_options=None, if_sheet_exists=None, engine_kwargs=None)
  • path:这是必需的参数,指定了要写入的 Excel 文件的路径、URL 或文件对象。可以是本地文件路径、远程存储路径(如 S3)、URL 链接或已打开的文件对象。
  • engine:这是一个可选参数,用于指定写入 Excel 文件的引擎。如果为 None,则 pandas 会自动选择一个可用的引擎(默认优先选择 openpyxl,如果不可用则选择其他可用引擎)。常见的引擎包括 'openpyxl'(用于 .xlsx 文件)、'xlsxwriter'(提供高级格式化和图表功能)、'odf'(用于 OpenDocument 格式如 .ods)等。
  • date_format:这是一个可选参数,指定写入 Excel 文件中日期的格式字符串,例如 "YYYY-MM-DD"
  • datetime_format:这是一个可选参数,指定写入 Excel 文件中日期时间对象的格式字符串,例如 "YYYY-MM-DD HH:MM:SS"
  • mode:这是一个可选参数,默认为 'w',表示写入模式。如果设置为 'a',则表示追加模式,向现有文件中添加数据(仅支持部分引擎,如 openpyxl)。
  • storage_options:这是一个可选参数,用于指定与存储后端连接的额外选项,例如认证信息、访问权限等,适用于写入远程存储(如 S3、GCS)。
  • if_sheet_exists:这是一个可选参数,默认为 'error',指定如果工作表已经存在时的行为。选项包括 'error'(抛出错误)、'new'(创建一个新工作表)、'replace'(替换现有工作表的内容)、'overlay'(在现有工作表上覆盖写入)。
  • engine_kwargs:这是一个可选参数,用于传递给引擎的其他关键字参数。这些参数会传递给相应引擎的函数,例如 xlsxwriter.Workbook(file, **engine_kwargs) 或 openpyxl.Workbook(**engine_kwargs) 等。

4.1 ExcelWriter

        基本语法:

with ExcelWriter('output.xlsx') as writer:df.to_excel(writer, sheet_name='Sheet1')

        你可以使用同一个 ExcelWriter 对象将不同的 DataFrame 写入同一个 Excel 文件的不同工作表。

import pandas as pddf1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"])
df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
with pd.ExcelWriter("path_to_file.xlsx") as writer:df1.to_excel(writer, sheet_name="Sheet1")df2.to_excel(writer, sheet_name="Sheet2")

4.2 设置日期格式或日期时间格式

from datetime import date, datetimeimport pandas as pddf = pd.DataFrame([[date(2014, 1, 31), date(1999, 9, 24)],[datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],],index=["Date", "Datetime"],columns=["X", "Y"],
)
with pd.ExcelWriter("path_to_file.xlsx",date_format="YYYY-MM-DD",datetime_format="YYYY-MM-DD HH:MM:SS"
) as writer:df.to_excel(writer)

4.3 向现有 Excel 文件追加内容

with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:df.to_excel(writer, sheet_name="Sheet3")

        使用 if_sheet_exists 参数替换已存在的工作表:

with ExcelWriter("path_to_file.xlsx",mode="a",engine="openpyxl",if_sheet_exists="replace",
) as writer:df.to_excel(writer, sheet_name="Sheet1")

        向同一个工作表写入多个 DataFrame,注意 if_sheet_exists 参数需要设置为 overlay:

with ExcelWriter("path_to_file.xlsx",mode="a",engine="openpyxl",if_sheet_exists="overlay",
) as writer:df1.to_excel(writer, sheet_name="Sheet1")df2.to_excel(writer, sheet_name="Sheet1", startcol=3)

4.4 将 Excel 文件存储在内存中

import ioimport pandas as pddf = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
buffer = io.BytesIO()
with pd.ExcelWriter(buffer) as writer:df.to_excel(writer)

4.5 将 Excel 文件打包到 zip 压缩文件中

import zipfileimport pandas as pddf = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
with zipfile.ZipFile("path_to_file.zip", "w") as zf:with zf.open("filename.xlsx", "w") as buffer:with pd.ExcelWriter(buffer) as writer:df.to_excel(writer)

4.6 向底层引擎传递额外的参数

with pd.ExcelWriter("path_to_file.xlsx",engine="xlsxwriter",engine_kwargs={"options": {"nan_inf_to_errors": True}}
) as writer:df.to_excel(writer)

        在追加模式下,engine_kwargs 会传递给 openpyxl 的 load_workbook:

with pd.ExcelWriter("path_to_file.xlsx",engine="openpyxl",mode="a",engine_kwargs={"keep_vba": True}
) as writer:df.to_excel(writer, sheet_name="Sheet2")

相关文章:

Python Pandas(5):Pandas Excel 文件操作

Pandas 提供了丰富的 Excel 文件操作功能&#xff0c;帮助我们方便地读取和写入 .xls 和 .xlsx 文件&#xff0c;支持多表单、索引、列选择等复杂操作&#xff0c;是数据分析中必备的工具。 操作方法说明读取 Excel 文件pd.read_excel()读取 Excel 文件&#xff0c;返回 DataF…...

区块链技术:Facebook 重塑社交媒体信任的新篇章

在这个信息爆炸的时代&#xff0c;社交媒体已经成为我们生活中不可或缺的一部分。然而&#xff0c;随着社交平台的快速发展&#xff0c;隐私泄露、数据滥用和虚假信息等问题也日益凸显。这些问题的核心在于传统社交媒体依赖于中心化服务器存储和管理用户数据&#xff0c;这种模…...

跨平台App开发,有哪些编程语言和工具,比较一下优劣势?

1. React Native 语言&#xff1a;JavaScript 工具&#xff1a;React Native框架 优势&#xff1a; 跨平台支持&#xff1a;一套代码可同时运行在iOS和Android上。 社区支持&#xff1a;拥有庞大的社区和丰富的第三方库。 热更新&#xff1a;支持热更新&#xff0c;无需重新…...

Windows逆向工程入门之汇编环境搭建

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 Visual Studio逆向工程配置 基础环境搭建 Visual Studio 官方下载地址安装配置选项(后期可随时通过VS调整) 使用C的桌面开发 拓展可选选项 MASM汇编框架 配置MASM汇编项目 创建新项目 选择空…...

网络安全溯源 思路 网络安全原理

网络安全背景 网络就是实现不同主机之间的通讯。网络出现之初利用TCP/IP协议簇的相关协议概念&#xff0c;已经满足了互连两台主机之间可以进行通讯的目的&#xff0c;虽然看似简简单单几句话&#xff0c;就描述了网络概念与网络出现的目的&#xff0c;但是为了真正实现两台主机…...

《Peephole LSTM:窥视孔连接如何开启性能提升之门》

在深度学习的领域中&#xff0c;长短期记忆网络&#xff08;LSTM&#xff09;以其出色的序列数据处理能力而备受瞩目。而Peephole LSTM作为LSTM的一种重要变体&#xff0c;通过引入窥视孔连接&#xff0c;进一步提升了模型的性能。那么&#xff0c;窥视孔连接究竟是如何发挥作用…...

viem库

viem是一个用于和以太坊进行交互的javascript库&#xff0c;它提供了简单的API进行智能合约的读取和写入操作&#xff0c;你可以使用它来与区块链上智能合约进行交互&#xff0c;查询链上数据等。 基本功能 1&#xff0c;创建公有客户端 createPublicClient 可以创建一个链接…...

Iceberg and AIStor 的Lakehouse Architecture 权威指南

Apache Iceberg 似乎已经掀起了一场&#xff08;暴风雪&#xff09;数据世界。它最初由 Ryan Blue&#xff08;也是 Tabular 的成员&#xff0c;现在是 Databricks 的名人&#xff09;在 Netflix 孵化&#xff0c;最终被传输到它目前所在的 Apache 软件基金会。从本质上讲&…...

TCP/IP 协议图解 | TCP 协议详解 | IP 协议详解

注&#xff1a;本文为 “TCP/IP 协议” 相关文章合辑。 未整理去重。 TCP/IP 协议图解 退休的汤姆 于 2021-07-01 16:14:25 发布 TCP/IP 协议简介 TCP/IP 协议包含了一系列的协议&#xff0c;也叫 TCP/IP 协议族&#xff08;TCP/IP Protocol Suite&#xff0c;或 TCP/IP Pr…...

第四节 docker基础之---dockerfile部署JDK

本地宿主机配置jdk 创建test目录&#xff1a; [rootdocker ~]# mkdir test 压缩包tomcat和jdk上传到root/test目录下&#xff1a; 本机部署Jdk 解压jdk&#xff1a; [rootdocker test]# tar -xf jdk-8u211-linux-x64.tar.gz [rootdocker test]# tar -xf apache-tomcat-8.5.…...

Arcgis/GeoScene API for JavaScript 三维场景底图网格设为透明

项目场景&#xff1a; 有时候加载的地图服务白色区域会露底&#xff0c;导致在三维场景时&#xff0c;露出了三维网格&#xff0c;影响效果&#xff0c;自此&#xff0c;我们需要将三维场景的底图设为白色或透明。 问题描述 如图所示&#xff1a; 解决方案&#xff1a; 提示…...

基于javaweb的SpringBoot电影推荐系统

&#x1f3ac; 秋野酱&#xff1a;《个人主页》 &#x1f525; 个人专栏:《Java专栏》《Python专栏》 ⛺️心若有所向往,何惧道阻且长 文章目录 运行环境开发工具适用功能说明项目介绍环境需要技术栈使用说明 运行环境 Java≥8、MySQL≥5.7 开发工具 eclipse/idea/myeclips…...

【kafka系列】Topic 与 Partition

Kafka 的 Topic&#xff08;主题&#xff09; 和 Partition&#xff08;分区&#xff09; 是数据组织的核心概念&#xff0c;它们的映射关系及在 Broker 上的分布直接影响 Kafka 的性能、扩展性和容错能力。以下是详细解析&#xff1a; 一、Topic 与 Partition 的映射关系 Top…...

大数据项目2:基于hadoop的电影推荐和分析系统设计和实现

前言 大数据项目源码资料说明&#xff1a; 大数据项目资料来自我多年工作中的开发积累与沉淀。 我分享的每个项目都有完整代码、数据、文档、效果图、部署文档及讲解视频。 可用于毕设、课设、学习、工作或者二次开发等&#xff0c;极大提升效率&#xff01; 1、项目目标 本…...

[笔记] 汇编杂记(持续更新)

文章目录 前言举例解释函数的序言函数的调用栈数据的传递 总结 前言 举例解释 // Type your code here, or load an example. int square(int num) {return num * num; }int sub(int num1, int num2) {return num1 - num2; }int add(int num1, int num2) {return num1 num2;…...

同步阻塞IO和多路复用IO(epoll)的性能对比

多路复用 I/O&#xff08;如 epoll&#xff09;相比传统的同步阻塞 I/O 在网络性能上具有显著优势&#xff0c;主要原因在于其高效的事件驱动机制和对高并发的优化能力。 1. 同步阻塞 I/O 的性能瓶颈 在传统的同步阻塞 I/O 模型中&#xff0c;每个网络连接通常需要一个独立的线…...

前端 CSS 动态设置样式::class、:style 等技巧详解

一、:class 动态绑定类名 v-bind:class&#xff08;缩写为 :class&#xff09;可以动态地绑定一个或多个 CSS 类名。 1. 对象语法 通过对象语法&#xff0c;可以根据条件动态切换类名。 <template><div :class"{ greenText: isActive, red-text: hasError }&…...

qt widget和qml界面集成到一起

将 Qt Widgets 和 QML 界面集成在一起可以利用 QQuickWidget 或 QQuickView。以下是基本步骤: 使用 QQuickWidget 创建 Qt Widgets 项目: 创建一个基于 Widgets 的应用程序。添加 QQuickWidget: 在你的窗口或布局中添加 QQuickWidget。 例如,可以在 QMainWindow 中使用: …...

BUU30 [网鼎杯 2018]Fakebook1

是一个登录界面&#xff0c;我们先注册一个试试&#xff1a; 用dirsearch扫描出来robots.txt&#xff0c;也发现了flag.php&#xff0c;并下载user.php.bak 源代码内容&#xff1a; <?phpclass UserInfo {public $name "";public $age 0;public $blog &quo…...

信息科技伦理与道德3-2:智能决策

2.2 智能推荐 推荐算法介绍 推荐系统&#xff1a;猜你喜欢 https://blog.csdn.net/search_129_hr/article/details/120468187 推荐系统–矩阵分解 https://blog.csdn.net/search_129_hr/article/details/121598087 案例一&#xff1a;YouTube推荐算法向儿童推荐不适宜视频 …...

《代码随想录第二十八天》——回溯算法理论基础、组合问题、组合总和III、电话号码的字母组合

《代码随想录第二十八天》——回溯算法理论基础、组合问题、组合总和III、电话号码的字母组合 本篇文章的所有内容仅基于C撰写。 1. 基础知识 1.1 概念 回溯是递归的副产品&#xff0c;它也是遍历树的一种方式&#xff0c;其本质是穷举。它并不高效&#xff0c;但是比暴力循…...

PromptSource官方文档翻译

目录 核心概念解析 提示模板&#xff08;Prompt Template&#xff09; P3数据集 安装指南 基础安装&#xff08;仅使用提示&#xff09; 开发环境安装&#xff08;需创建提示&#xff09; API使用详解 基本用法 子数据集处理 批量操作 提示创建流程 Web界面操作 手…...

USB子系统学习(四)用户态下使用libusb读取鼠标数据

文章目录 1、声明2、HID协议2.1、描述符2.2、鼠标数据格式 3、应用程序4、编译应用程序5、测试6、其它 1、声明 本文是在学习韦东山《驱动大全》USB子系统时&#xff0c;为梳理知识点和自己回看而记录&#xff0c;全部内容高度复制粘贴。 韦老师的《驱动大全》&#xff1a;商…...

Ansible简单介绍及用法

一、简介 Ansible是一个简单的自动化运维管理工具&#xff0c;基于Python语言实现&#xff0c;由Paramiko和PyYAML两个关键模块构建&#xff0c;可用于自动化部署应用、配置、编排task(持续交付、无宕机更新等)。主版本大概每2个月发布一次。 Ansible与Saltstack最大的区别是…...

目前推荐的优秀编程学习网站与资源平台,涵盖不同学习方式和受众需求

一、综合教程与互动学习平台 菜鸟教程 特点:适合零基础新手,提供免费编程语言教程(Python、Java、C/C++、前端等),页面简洁且包含大量代码示例,支持快速上手。适用人群:编程入门者、需要快速查阅语法基础的学习者。W3Schools 特点:专注于Web开发技术(HTML、CSS、JavaS…...

软件工程-软件需求规格说明(SRS)

基本介绍 目标 便于用户、分析人员、设计人员进行交流 支持目标软件系统的确认&#xff08;验收&#xff09; 控制系统进化过程&#xff08;追加需求&#xff09;&#xff1a;拥有版本记录表 需要在软件分析完成后&#xff0c;编写完成软件需求说明书。 具体标准可参考GB…...

运维_Mac环境单体服务Docker部署实战手册

Docker部署 本小节&#xff0c;讲解如何将前端 后端项目&#xff0c;使用 Docker 容器&#xff0c;部署到 dev 开发环境下的一台 Mac 电脑上。 1 环境准备 需要安装如下环境&#xff1a; Docker&#xff1a;容器MySQL&#xff1a;数据库Redis&#xff1a;缓存Nginx&#x…...

UE5.5 PCGFrameWork--GPU CustomHLSL

在上一篇UE5.5 PCGFrameWork使用入门-CSDN博客 大致介绍了UE5 PCG框架的基本使用. 本篇探索PCGFrame的高级应用--GPU点云。也就是利用GPU HLSL编程对点云进行操纵&#xff0c;可以大幅度提升点云生成效率。 目前在UE5 PCG框架中&#xff0c;点云GPU的应用大致分为三类: Point…...

RabbitMQ 如何设置限流?

RabbitMQ 的限流&#xff08;流量控制&#xff09;主要依赖于 QoS&#xff08;Quality of Service&#xff09; 机制&#xff0c;即 prefetch count 参数。这个参数控制每个消费者一次最多能获取多少条未确认的消息&#xff0c;从而避免某个消费者被大量消息压垮。 1. RabbitMQ…...

json格式,curl命令,及轻量化处理工具

一. JSON格式 JSON&#xff08;JavaScript Object Notation&#xff09; 是一种轻量级的数据交换格式。它基于一个子集的JavaScript编程语言&#xff0c;使用人类易于阅读的文本格式来存储和表示数据。尽管名字中有“JavaScript”&#xff0c;但JSON是语言无关的&#xff0c;几…...