C/C++每日一练(20230410) 二叉树专场(4)

目录
1. 二叉搜索树迭代器 🌟🌟🌟
2. 验证二叉搜索树 🌟🌟🌟
3. 不同的二叉搜索树 II 🌟🌟🌟
🌟 每日一练刷题专栏 🌟
Golang每日一练 专栏
Python每日一练 专栏
C/C++每日一练 专栏
Java每日一练 专栏
1. 二叉搜索树迭代器
实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器:
BSTIterator(TreeNode root)初始化BSTIterator类的一个对象。BST 的根节点root会作为构造函数的一部分给出。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。boolean hasNext()如果向指针右侧遍历存在数字,则返回true;否则返回false。int next()将指针向右移动,然后返回指针处的数字。
注意,指针初始化为一个不存在于 BST 中的数字,所以对 next() 的首次调用将返回 BST 中的最小元素。
你可以假设 next() 调用总是有效的,也就是说,当调用 next() 时,BST 的中序遍历中至少存在一个下一个数字。
示例:

输入 ["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"] [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []] 输出 [null, 3, 7, true, 9, true, 15, true, 20, false] 解释 BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); bSTIterator.next(); // 返回 3 bSTIterator.next(); // 返回 7 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 9 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 15 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 20 bSTIterator.hasNext(); // 返回 False
提示:
- 树中节点的数目在范围
[1, 10^5]内 0 <= Node.val <= 10^6- 最多调用
10^5次hasNext和next操作
进阶:
- 你可以设计一个满足下述条件的解决方案吗?
next()和hasNext()操作均摊时间复杂度为O(1),并使用O(h)内存。其中h是树的高度。
出处:
https://edu.csdn.net/practice/24633337
代码:
#define null INT_MIN
#include <bits/stdc++.h>
using namespace std;struct TreeNode
{int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};class BSTIterator
{
public:BSTIterator(TreeNode *root){for (; root != nullptr; root = root->left){sti_.push(root);}}/** @return the next smallest number */int next(){TreeNode *smallest = sti_.top();sti_.pop();int val = smallest->val;smallest = smallest->right;for (; smallest != nullptr; smallest = smallest->left){sti_.push(smallest);}return val;}/** @return whether we have a next smallest number */bool hasNext(){return !sti_.empty();}
private:stack<TreeNode *> sti_;
};
/*** Your BSTIterator object will be instantiated and called as such:* BSTIterator* obj = new BSTIterator(root);* int param_1 = obj->next();* bool param_2 = obj->hasNext();*/TreeNode* buildTree(vector<int>& nums)
{if (nums.empty()) return nullptr;TreeNode *root = new TreeNode(nums.front());queue<TreeNode*> q;q.push(root);int i = 1;while(!q.empty() && i < nums.size()){TreeNode *cur = q.front();q.pop();if(i < nums.size() && nums[i] != null){cur->left = new TreeNode(nums[i]);q.push(cur->left);}i++;if(i < nums.size() && nums[i] != null){cur->right = new TreeNode(nums[i]);q.push(cur->right);}i++;}return root;
}int main()
{vector<int> nums = {7, 3, 15, null, null, 9, 20};TreeNode *root = buildTree(nums);BSTIterator bSTIterator = BSTIterator(root); cout << bSTIterator.next() << endl; // 返回 3 cout << bSTIterator.next() << endl; // 返回 7 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True cout << bSTIterator.next() << endl; // 返回 9 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True cout << bSTIterator.next() << endl; // 返回 15 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True cout << bSTIterator.next() << endl; // 返回 20 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True return 0;
}
输出:
3
7
True
9
True
15
True
20
False
2. 验证二叉搜索树
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:

输入:root = [2,1,3] 输出:true
示例 2:

输入:root = [5,1,4,null,null,3,6] 输出:false 解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
- 树中节点数目范围在
[1, 10^4]内 -2^31 <= Node.val <= 2^31 - 1
以下程序实现了这一功能,请你填补空白处内容:
```c++
#include <bits/stdc++.h>
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class Solution
{
public:
bool isValidBST(TreeNode *root)
{
stack<TreeNode *> stk;
int prev = INT_MIN;
bool first = true;
while (!stk.empty() || root != nullptr)
{
if (root != nullptr)
{
stk.push(root);
root = root->left;
}
else
{
root = stk.top();
stk.pop();
_______________________;
}
}
return true;
}
};
```
出处:
https://edu.csdn.net/practice/25116236
代码:
#define null INT_MIN
#include <bits/stdc++.h>
using namespace std;struct TreeNode
{int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution
{
public:bool isValidBST(TreeNode *root){stack<TreeNode *> stk;int prev = INT_MIN;bool first = true;while (!stk.empty() || root != nullptr){if (root != nullptr){stk.push(root);root = root->left;}else{root = stk.top();stk.pop();if (!first && prev >= root->val){return false;}first = false;prev = root->val;root = root->right;}}return true;}
};TreeNode* buildTree(vector<int>& nums)
{if (nums.empty()) return nullptr;TreeNode *root = new TreeNode(nums.front());queue<TreeNode*> q;q.push(root);int i = 1;while(!q.empty() && i < nums.size()){TreeNode *cur = q.front();q.pop();if(i < nums.size() && nums[i] != null){cur->left = new TreeNode(nums[i]);q.push(cur->left);}i++;if(i < nums.size() && nums[i] != null){cur->right = new TreeNode(nums[i]);q.push(cur->right);}i++;}return root;
}int main()
{Solution s;vector<int> nums = {2,1,3};TreeNode* root = buildTree(nums);cout << (s.isValidBST(root) ? "true" : "false") << endl;nums = {5,1,4,null,null,3,6};root = buildTree(nums);cout << (s.isValidBST(root) ? "true" : "false") << endl;return 0;
}
输出:
true
false
3. 不同的二叉搜索树 II
给你一个整数 n ,请你生成并返回所有由 n 个节点组成且节点值从 1 到 n 互不相同的不同 二叉搜索树 。可以按 任意顺序 返回答案。
示例 1:

输入:n = 3 输出:[[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]
示例 2:
输入:n = 1 输出:[[1]]
提示:
1 <= n <= 8
代码:
#include <stdio.h>
#include <stdlib.h>struct TreeNode
{int val;struct TreeNode *left;struct TreeNode *right;
};static struct TreeNode *dfs(int low, int high, int *count)
{int i, j, k;if (low > high){*count = 0;return NULL;}else if (low == high){struct TreeNode *node = malloc(sizeof(*node));node->val = low;node->left = NULL;node->right = NULL;*count = 1;return node;}else{*count = 0;int capacity = 5;struct TreeNode *roots = malloc(capacity * sizeof(struct TreeNode));for (i = low; i <= high; i++){int left_cnt, right_cnt;struct TreeNode *left_subs = dfs(low, i - 1, &left_cnt);struct TreeNode *right_subs = dfs(i + 1, high, &right_cnt);if (left_cnt == 0)left_cnt = 1;if (right_cnt == 0)right_cnt = 1;if (*count + (left_cnt * right_cnt) >= capacity){capacity *= 2;capacity += left_cnt * right_cnt;roots = realloc(roots, capacity * sizeof(struct TreeNode));}for (j = 0; j < left_cnt; j++){for (k = 0; k < right_cnt; k++){roots[*count].val = i;roots[*count].left = left_subs == NULL ? NULL : &left_subs[j];roots[*count].right = right_subs == NULL ? NULL : &right_subs[k];(*count)++;}}}return roots;}
}static struct TreeNode **generateTrees(int n, int *returnSize)
{int i, count = 0;struct TreeNode *roots = dfs(1, n, &count);struct TreeNode **results = malloc(count * sizeof(struct TreeNode *));for (i = 0; i < count; i++){results[i] = &roots[i];}*returnSize = count;return results;
}static void dump(struct TreeNode *node)
{printf("%d ", node->val);if (node->left != NULL){dump(node->left);}else{printf("# ");}if (node->right != NULL){dump(node->right);}else{printf("# ");}
}int main(int argc, char **argv)
{if (argc != 2){fprintf(stderr, "Usage: ./test n\n");exit(-1);}int i, count = 0;struct TreeNode **results = generateTrees(atoi(argv[1]), &count);for (i = 0; i < count; i++){dump(results[i]);printf("\n");}return 0;
}
略
🌟 每日一练刷题专栏 🌟
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
🌟 收藏,你的青睐是我努力的方向!
✎ 评论,你的意见是我进步的财富!
☸ 主页:https://hannyang.blog.csdn.net/
![]() | Golang每日一练 专栏 |
![]() | Python每日一练 专栏 |
![]() | C/C++每日一练 专栏 |
![]() | Java每日一练 专栏 |
相关文章:
C/C++每日一练(20230410) 二叉树专场(4)
目录 1. 二叉搜索树迭代器 🌟🌟🌟 2. 验证二叉搜索树 🌟🌟🌟 3. 不同的二叉搜索树 II 🌟🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专…...
策化整理1
概述: 本游戏是一款恐怖类解密游戏,以反应毒品的危害和反对家庭暴力为主题 在游戏中玩家扮演被困入梦境内的主人公,寻找逃出梦境的方法 本游戏故事大背景: 主人公的父亲是一名毒贩,在母亲发现父亲开始吸毒后选择与父亲…...
【服务通信自定义srv调用3----客户端的优化】
客户端的优化 服务通信自定义srv调用,客户端随意提交两个数,完成数的相加。也就是实现参数的动态提交: 1.格式:rosrun xxxx xxxx 12 34 2.节点执行时候,需要获取命令中的参数,并且组织进 request 代码中应…...
React跨域解决方案
一、跨域日志报错 我们由于项目需要经常会需要对不同域名、不同子域的网站接口发起请求,有时甚至是对于同一域名的不同端口发起请求,此时我们经常看到以下报错: Access to XMLHttpRequest at xxx from origin xxx has been blocked by COR…...
内存五区的概念,内存池技术的诞生。
首先提出一道经典的面试题来引出今天的主角: 进程的虚拟空间分布是什么样的,全局变量放在哪里? 在数据初始化之后,全局变量放在.data段 在数据未初始化时,全局变量放在.bss段 内存五区 进程虚拟内存主要分为五个部分…...
力扣:字符串中的第一个唯一字符(C++实现)
题目部分: 解题思路: 方案一: 首先认真审题的小伙伴们一定会发现就是题目给了提示只包含小写字母,也就是说我们的排查范围是小写的26个字母。为了怕有的友友们一时短路想不起来,我就其按照顺序列出来吧。 即&#x…...
攻防世界 favorite_number mfw、[BJDCTF2020]ZJCTF,不过如此
favorite_number 进入环境得到源码 <?php //php5.5.9 $stuff $_POST["stuff"]; $array [admin, user]; if($stuff $array && $stuff[0] ! admin) {$num $_POST["num"];if (preg_match("/^\d$/im",$num)){if (!preg_match("…...
SummingMergeTree
假设有这样⼀种查询需求:终端⽤户只需要查询数据的汇总结果,不关⼼明细数据,并且数据的汇总条件是预先明确的(GROUP BY 条件明确,且不会随意改变)。 对于这样的查询场景,在ClickHouse中如何解决…...
JUC并发编程基础篇第一章之进程/并发/异步的概念[理解基本概念]
1. 进程和线程的概念 进程: 系统正在运行的一个应用程序;程序一旦运行就是一个进程;进程是资源分配的最小单位 线程: 是进程的实际运行单位;一个人进程可以并发控制多个线程,每条线程并行执行不同的任务 区别: 进程基本上相互独立的;而线程存在于进程内,是进程…...
c语言—指针进阶
创作不易,本篇文章如果帮助到了你,还请点赞支持一下♡>𖥦<)!! 主页专栏有更多知识,如有疑问欢迎大家指正讨论,共同进步! 给大家跳段街舞感谢支持!ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ…...
总结二分法
杨辉三角形(快速查找唯一值,mid型) //二分法解//流程:最大列->起点行->2k--n之间究竟哪一行(二分排列组合)->找到行数就等差数列对应位置#include<stdio.h> #include<stdlib.h>//注意排列组合的规律是建立在…...
二叉搜索树和AVL树
目录 一、二叉搜索树 1.什么是二叉搜索树 2.二叉搜索树的实现 (1)构建类 (2)查找函数 (3)插入函数 (4)删除函数 (5)补齐默认成员函数 (6…...
计算机体系结构量化研究方法【2】高速缓存Cache
目录1.计算机存储层次结构2.缓存相关概念3.缓存组织方式4.Cache回写机制5.Cache性能量化1.计算机存储层次结构 计算机存储层次结构可以看作是一个金字塔,越靠上层,容量越小,速度越快 L0:寄存器----CPU的寄存器保存着Cache取出的…...
初识设计模式 - 迭代器模式
简介 迭代器设计模式(Iterator Design Pattern),也叫作游标设计模式(Cursor Design Pattern)。 迭代器模式将集合对象的遍历操作从集合类中拆分出来,放到迭代器类中,让两者的职责更加单一。 …...
三路快排(基于三指针单趟排序的快速排序)+快排时间复杂度再分析
目录 一.前言 二. 三路快排 😍算法思想: 😍算法实现步骤: 😍三指针单趟排序的实现: 😍非递归快排完全体: 🤔与C标准库里的快排进行对比测试: 三.快排时间复杂度再分析 一.前言 http://t.csdn.cn/mz8dghttp://…...
Eyeshot Ultimate 2023 Crack
Eyeshot Ultimate 2023 Crack 已经引入了文档类。 工作区。文档现在包含绘制场景内容所需的所有数据。 2022版GEntities已被删除。 最后,一个真正的跨平台中立核心产品是可用的。 新功能 曲线、平面、曲面和体积网格。 屏幕空间环境光遮挡。 托管ReadDWG和ReadDXF类…...
JAVA-8-[SpringBoot]入门程序案例和原理分析
Spring Boot框架入门教程(快速学习版) Spring Boot教程BooTWiki.COM 1 Spring Boot Spring Boot是Pivotal(关键性的)团队在Spring的基础上提供的一套全新的开源框架,其目的是为了简化Spring应用的搭建和开发过程。Spring Boot去除了大量的X…...
前端工程化
一、AST (抽象语法树,Abstract Syntax Tree) 手把手带你走进Babel的编译世界 - 掘金 (juejin.cn) 1、概念 我们所写的代码转换为机器能识别的一种树形结构,本身是由一堆节点(Node)组成,每个节…...
【redis】单线程 VS 多线程(入门)
【redis】单线程 VS 多线程(入门) 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成&#…...
2023蓝桥杯Java研究生组赛题
蓝桥杯Java研究生组、JavaA组看过来,这两个组别题目基本一样 第一次参加了Java研究生组,Java组应该没有C/C那么卷吧,主要是觉得Java组可以避开很多ACM大佬,前面几题感觉难度还行没有特别难,后面几个大题依旧是没法做&a…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...



