C/C++每日一练(20230410) 二叉树专场(4)
目录
1. 二叉搜索树迭代器 🌟🌟🌟
2. 验证二叉搜索树 🌟🌟🌟
3. 不同的二叉搜索树 II 🌟🌟🌟
🌟 每日一练刷题专栏 🌟
Golang每日一练 专栏
Python每日一练 专栏
C/C++每日一练 专栏
Java每日一练 专栏
1. 二叉搜索树迭代器
实现一个二叉搜索树迭代器类BSTIterator
,表示一个按中序遍历二叉搜索树(BST)的迭代器:
BSTIterator(TreeNode root)
初始化BSTIterator
类的一个对象。BST 的根节点root
会作为构造函数的一部分给出。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。boolean hasNext()
如果向指针右侧遍历存在数字,则返回true
;否则返回false
。int next()
将指针向右移动,然后返回指针处的数字。
注意,指针初始化为一个不存在于 BST 中的数字,所以对 next()
的首次调用将返回 BST 中的最小元素。
你可以假设 next()
调用总是有效的,也就是说,当调用 next()
时,BST 的中序遍历中至少存在一个下一个数字。
示例:
输入 ["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"] [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []] 输出 [null, 3, 7, true, 9, true, 15, true, 20, false] 解释 BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); bSTIterator.next(); // 返回 3 bSTIterator.next(); // 返回 7 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 9 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 15 bSTIterator.hasNext(); // 返回 True bSTIterator.next(); // 返回 20 bSTIterator.hasNext(); // 返回 False
提示:
- 树中节点的数目在范围
[1, 10^5]
内 0 <= Node.val <= 10^6
- 最多调用
10^5
次hasNext
和next
操作
进阶:
- 你可以设计一个满足下述条件的解决方案吗?
next()
和hasNext()
操作均摊时间复杂度为O(1)
,并使用O(h)
内存。其中h
是树的高度。
出处:
https://edu.csdn.net/practice/24633337
代码:
#define null INT_MIN
#include <bits/stdc++.h>
using namespace std;struct TreeNode
{int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};class BSTIterator
{
public:BSTIterator(TreeNode *root){for (; root != nullptr; root = root->left){sti_.push(root);}}/** @return the next smallest number */int next(){TreeNode *smallest = sti_.top();sti_.pop();int val = smallest->val;smallest = smallest->right;for (; smallest != nullptr; smallest = smallest->left){sti_.push(smallest);}return val;}/** @return whether we have a next smallest number */bool hasNext(){return !sti_.empty();}
private:stack<TreeNode *> sti_;
};
/*** Your BSTIterator object will be instantiated and called as such:* BSTIterator* obj = new BSTIterator(root);* int param_1 = obj->next();* bool param_2 = obj->hasNext();*/TreeNode* buildTree(vector<int>& nums)
{if (nums.empty()) return nullptr;TreeNode *root = new TreeNode(nums.front());queue<TreeNode*> q;q.push(root);int i = 1;while(!q.empty() && i < nums.size()){TreeNode *cur = q.front();q.pop();if(i < nums.size() && nums[i] != null){cur->left = new TreeNode(nums[i]);q.push(cur->left);}i++;if(i < nums.size() && nums[i] != null){cur->right = new TreeNode(nums[i]);q.push(cur->right);}i++;}return root;
}int main()
{vector<int> nums = {7, 3, 15, null, null, 9, 20};TreeNode *root = buildTree(nums);BSTIterator bSTIterator = BSTIterator(root); cout << bSTIterator.next() << endl; // 返回 3 cout << bSTIterator.next() << endl; // 返回 7 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True cout << bSTIterator.next() << endl; // 返回 9 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True cout << bSTIterator.next() << endl; // 返回 15 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True cout << bSTIterator.next() << endl; // 返回 20 cout << (bSTIterator.hasNext() ? "True" : "False") << endl; // 返回 True return 0;
}
输出:
3
7
True
9
True
15
True
20
False
2. 验证二叉搜索树
给你一个二叉树的根节点 root
,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:root = [2,1,3] 输出:true
示例 2:
输入:root = [5,1,4,null,null,3,6] 输出:false 解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
- 树中节点数目范围在
[1, 10^4]
内 -2^31 <= Node.val <= 2^31 - 1
以下程序实现了这一功能,请你填补空白处内容:
```c++
#include <bits/stdc++.h>
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class Solution
{
public:
bool isValidBST(TreeNode *root)
{
stack<TreeNode *> stk;
int prev = INT_MIN;
bool first = true;
while (!stk.empty() || root != nullptr)
{
if (root != nullptr)
{
stk.push(root);
root = root->left;
}
else
{
root = stk.top();
stk.pop();
_______________________;
}
}
return true;
}
};
```
出处:
https://edu.csdn.net/practice/25116236
代码:
#define null INT_MIN
#include <bits/stdc++.h>
using namespace std;struct TreeNode
{int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution
{
public:bool isValidBST(TreeNode *root){stack<TreeNode *> stk;int prev = INT_MIN;bool first = true;while (!stk.empty() || root != nullptr){if (root != nullptr){stk.push(root);root = root->left;}else{root = stk.top();stk.pop();if (!first && prev >= root->val){return false;}first = false;prev = root->val;root = root->right;}}return true;}
};TreeNode* buildTree(vector<int>& nums)
{if (nums.empty()) return nullptr;TreeNode *root = new TreeNode(nums.front());queue<TreeNode*> q;q.push(root);int i = 1;while(!q.empty() && i < nums.size()){TreeNode *cur = q.front();q.pop();if(i < nums.size() && nums[i] != null){cur->left = new TreeNode(nums[i]);q.push(cur->left);}i++;if(i < nums.size() && nums[i] != null){cur->right = new TreeNode(nums[i]);q.push(cur->right);}i++;}return root;
}int main()
{Solution s;vector<int> nums = {2,1,3};TreeNode* root = buildTree(nums);cout << (s.isValidBST(root) ? "true" : "false") << endl;nums = {5,1,4,null,null,3,6};root = buildTree(nums);cout << (s.isValidBST(root) ? "true" : "false") << endl;return 0;
}
输出:
true
false
3. 不同的二叉搜索树 II
给你一个整数 n
,请你生成并返回所有由 n
个节点组成且节点值从 1
到 n
互不相同的不同 二叉搜索树 。可以按 任意顺序 返回答案。
示例 1:
输入:n = 3 输出:[[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]
示例 2:
输入:n = 1 输出:[[1]]
提示:
1 <= n <= 8
代码:
#include <stdio.h>
#include <stdlib.h>struct TreeNode
{int val;struct TreeNode *left;struct TreeNode *right;
};static struct TreeNode *dfs(int low, int high, int *count)
{int i, j, k;if (low > high){*count = 0;return NULL;}else if (low == high){struct TreeNode *node = malloc(sizeof(*node));node->val = low;node->left = NULL;node->right = NULL;*count = 1;return node;}else{*count = 0;int capacity = 5;struct TreeNode *roots = malloc(capacity * sizeof(struct TreeNode));for (i = low; i <= high; i++){int left_cnt, right_cnt;struct TreeNode *left_subs = dfs(low, i - 1, &left_cnt);struct TreeNode *right_subs = dfs(i + 1, high, &right_cnt);if (left_cnt == 0)left_cnt = 1;if (right_cnt == 0)right_cnt = 1;if (*count + (left_cnt * right_cnt) >= capacity){capacity *= 2;capacity += left_cnt * right_cnt;roots = realloc(roots, capacity * sizeof(struct TreeNode));}for (j = 0; j < left_cnt; j++){for (k = 0; k < right_cnt; k++){roots[*count].val = i;roots[*count].left = left_subs == NULL ? NULL : &left_subs[j];roots[*count].right = right_subs == NULL ? NULL : &right_subs[k];(*count)++;}}}return roots;}
}static struct TreeNode **generateTrees(int n, int *returnSize)
{int i, count = 0;struct TreeNode *roots = dfs(1, n, &count);struct TreeNode **results = malloc(count * sizeof(struct TreeNode *));for (i = 0; i < count; i++){results[i] = &roots[i];}*returnSize = count;return results;
}static void dump(struct TreeNode *node)
{printf("%d ", node->val);if (node->left != NULL){dump(node->left);}else{printf("# ");}if (node->right != NULL){dump(node->right);}else{printf("# ");}
}int main(int argc, char **argv)
{if (argc != 2){fprintf(stderr, "Usage: ./test n\n");exit(-1);}int i, count = 0;struct TreeNode **results = generateTrees(atoi(argv[1]), &count);for (i = 0; i < count; i++){dump(results[i]);printf("\n");}return 0;
}
略
🌟 每日一练刷题专栏 🌟
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
🌟 收藏,你的青睐是我努力的方向!
✎ 评论,你的意见是我进步的财富!
☸ 主页:https://hannyang.blog.csdn.net/
![]() | Golang每日一练 专栏 |
![]() | Python每日一练 专栏 |
![]() | C/C++每日一练 专栏 |
![]() | Java每日一练 专栏 |
相关文章:

C/C++每日一练(20230410) 二叉树专场(4)
目录 1. 二叉搜索树迭代器 🌟🌟🌟 2. 验证二叉搜索树 🌟🌟🌟 3. 不同的二叉搜索树 II 🌟🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专…...

策化整理1
概述: 本游戏是一款恐怖类解密游戏,以反应毒品的危害和反对家庭暴力为主题 在游戏中玩家扮演被困入梦境内的主人公,寻找逃出梦境的方法 本游戏故事大背景: 主人公的父亲是一名毒贩,在母亲发现父亲开始吸毒后选择与父亲…...

【服务通信自定义srv调用3----客户端的优化】
客户端的优化 服务通信自定义srv调用,客户端随意提交两个数,完成数的相加。也就是实现参数的动态提交: 1.格式:rosrun xxxx xxxx 12 34 2.节点执行时候,需要获取命令中的参数,并且组织进 request 代码中应…...

React跨域解决方案
一、跨域日志报错 我们由于项目需要经常会需要对不同域名、不同子域的网站接口发起请求,有时甚至是对于同一域名的不同端口发起请求,此时我们经常看到以下报错: Access to XMLHttpRequest at xxx from origin xxx has been blocked by COR…...

内存五区的概念,内存池技术的诞生。
首先提出一道经典的面试题来引出今天的主角: 进程的虚拟空间分布是什么样的,全局变量放在哪里? 在数据初始化之后,全局变量放在.data段 在数据未初始化时,全局变量放在.bss段 内存五区 进程虚拟内存主要分为五个部分…...

力扣:字符串中的第一个唯一字符(C++实现)
题目部分: 解题思路: 方案一: 首先认真审题的小伙伴们一定会发现就是题目给了提示只包含小写字母,也就是说我们的排查范围是小写的26个字母。为了怕有的友友们一时短路想不起来,我就其按照顺序列出来吧。 即&#x…...

攻防世界 favorite_number mfw、[BJDCTF2020]ZJCTF,不过如此
favorite_number 进入环境得到源码 <?php //php5.5.9 $stuff $_POST["stuff"]; $array [admin, user]; if($stuff $array && $stuff[0] ! admin) {$num $_POST["num"];if (preg_match("/^\d$/im",$num)){if (!preg_match("…...

SummingMergeTree
假设有这样⼀种查询需求:终端⽤户只需要查询数据的汇总结果,不关⼼明细数据,并且数据的汇总条件是预先明确的(GROUP BY 条件明确,且不会随意改变)。 对于这样的查询场景,在ClickHouse中如何解决…...

JUC并发编程基础篇第一章之进程/并发/异步的概念[理解基本概念]
1. 进程和线程的概念 进程: 系统正在运行的一个应用程序;程序一旦运行就是一个进程;进程是资源分配的最小单位 线程: 是进程的实际运行单位;一个人进程可以并发控制多个线程,每条线程并行执行不同的任务 区别: 进程基本上相互独立的;而线程存在于进程内,是进程…...

c语言—指针进阶
创作不易,本篇文章如果帮助到了你,还请点赞支持一下♡>𖥦<)!! 主页专栏有更多知识,如有疑问欢迎大家指正讨论,共同进步! 给大家跳段街舞感谢支持!ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ…...

总结二分法
杨辉三角形(快速查找唯一值,mid型) //二分法解//流程:最大列->起点行->2k--n之间究竟哪一行(二分排列组合)->找到行数就等差数列对应位置#include<stdio.h> #include<stdlib.h>//注意排列组合的规律是建立在…...

二叉搜索树和AVL树
目录 一、二叉搜索树 1.什么是二叉搜索树 2.二叉搜索树的实现 (1)构建类 (2)查找函数 (3)插入函数 (4)删除函数 (5)补齐默认成员函数 (6…...

计算机体系结构量化研究方法【2】高速缓存Cache
目录1.计算机存储层次结构2.缓存相关概念3.缓存组织方式4.Cache回写机制5.Cache性能量化1.计算机存储层次结构 计算机存储层次结构可以看作是一个金字塔,越靠上层,容量越小,速度越快 L0:寄存器----CPU的寄存器保存着Cache取出的…...

初识设计模式 - 迭代器模式
简介 迭代器设计模式(Iterator Design Pattern),也叫作游标设计模式(Cursor Design Pattern)。 迭代器模式将集合对象的遍历操作从集合类中拆分出来,放到迭代器类中,让两者的职责更加单一。 …...

三路快排(基于三指针单趟排序的快速排序)+快排时间复杂度再分析
目录 一.前言 二. 三路快排 😍算法思想: 😍算法实现步骤: 😍三指针单趟排序的实现: 😍非递归快排完全体: 🤔与C标准库里的快排进行对比测试: 三.快排时间复杂度再分析 一.前言 http://t.csdn.cn/mz8dghttp://…...

Eyeshot Ultimate 2023 Crack
Eyeshot Ultimate 2023 Crack 已经引入了文档类。 工作区。文档现在包含绘制场景内容所需的所有数据。 2022版GEntities已被删除。 最后,一个真正的跨平台中立核心产品是可用的。 新功能 曲线、平面、曲面和体积网格。 屏幕空间环境光遮挡。 托管ReadDWG和ReadDXF类…...

JAVA-8-[SpringBoot]入门程序案例和原理分析
Spring Boot框架入门教程(快速学习版) Spring Boot教程BooTWiki.COM 1 Spring Boot Spring Boot是Pivotal(关键性的)团队在Spring的基础上提供的一套全新的开源框架,其目的是为了简化Spring应用的搭建和开发过程。Spring Boot去除了大量的X…...

前端工程化
一、AST (抽象语法树,Abstract Syntax Tree) 手把手带你走进Babel的编译世界 - 掘金 (juejin.cn) 1、概念 我们所写的代码转换为机器能识别的一种树形结构,本身是由一堆节点(Node)组成,每个节…...

【redis】单线程 VS 多线程(入门)
【redis】单线程 VS 多线程(入门) 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成&#…...

2023蓝桥杯Java研究生组赛题
蓝桥杯Java研究生组、JavaA组看过来,这两个组别题目基本一样 第一次参加了Java研究生组,Java组应该没有C/C那么卷吧,主要是觉得Java组可以避开很多ACM大佬,前面几题感觉难度还行没有特别难,后面几个大题依旧是没法做&a…...

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测
多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测 目录多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测,CNN-BiLSTM-Atte…...

微积分——Rolle定理的理解(罗尔定理)
极值定理(Extreme Value Theorem)指出,闭区间[a,b]上连续的函数既有最大值,也有最小值。然而,其最大最小值都可能发生在端点。罗尔定理(Rolle’s Theorem)以法国数学家Michel Rolle(1652-1719)的名字命名,它给出了极值存在于闭区间…...

linux内核之select/poll/epoll
一些主流应用IO多路复用技术,突破高并发问题,如nginx、redis、netty,分布式服务框架dubbo,大数据组件hadoop、spark、flink、hbase纷纷使用netty作为网络通信组件。 一、背景:C10K问题 The C10K problem 最早被Dan …...

文件流下载
文件下载 后端传给前端json数据流,前端拿到之后存放在自定义的文件中import axios from "axios"; import qs from "query-string"; import {Notification } from "@arco-design/web-vue"; // 接口中需要含有文件名fileName export function dow…...

C语言模拟实现:atoi函数
在实现atoi之前我们先来了解一下atoi函数的作用是什么: 目录 1.实例演示 2.模拟实现 2.1 判断是否为空指针 2.2判断是否为空字符串 2.3判断正负号 2.4判断非数字字符 2.5判断是否越界 2.6完整代码 1.实例演示 //实例演示 #include <stdio.h> #include …...

LeetCode.每日一题 2427. 公因子的数目
Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法......感兴趣就关注我吧!你定不会失望。 🌈个人主页:主页链接 🌈算法专栏:专栏链接 我会一直往里填充内容哒! &…...

蓝牙BQB认证 - HFP profile配置说明
零.声明 本专栏文章我们会以连载的方式持续更新,本专栏计划更新内容如下: 第一篇:蓝牙综合介绍 ,主要介绍蓝牙的一些概念,产生背景,发展轨迹,市面蓝牙介绍,以及蓝牙开发板介绍。 第二篇:Trans…...

【接口测试工具】Eolink Apikit 快速入门教程
Eolink Apikit 下载安装【官方版】:https://www.eolink.com/apikit 发起 API 测试 进入 API 文档详情页,点击上方 测试 标签,进入 API 测试页,系统会根据 API 文档自动生成测试界面并且填充测试数据。 填写请求参数 首先填写好请…...

使用Python和OpenCV实现实时人脸检测并保存截图
在本篇博客中,我们将使用Python和OpenCV库实现一个实时人脸检测的小项目。我们将利用OpenCV中的Haar级联分类器来检测摄像头捕获的图像中的人脸。 项目功能 通过摄像头实时捕获视频流。使用Haar级联分类器检测视频帧中的人脸。在检测到的人脸周围绘制矩形框。实时…...

[linux kernel]slub内存管理分析(7) MEMCG的影响与绕过
文章目录背景前情回顾描述方法约定MEMCG总览省流总结简介slub 相关 memcg机制kernel 5.9 版本之前结构体初始化具体实现kernel 5.9-5.14kernel 5.14 之后突破slab限制方法cross cache attackpage 堆风水总结背景 前情回顾 关于slab几个结构体的关系和初始化和内存分配和释放的…...