当前位置: 首页 > news >正文

SummingMergeTree

假设有这样⼀种查询需求:终端⽤户只需要查询数据的汇总结果,不关⼼明细数据,并且数据的汇总条件是预先明确的(GROUP BY 条件明确,且不会随意改变)。

对于这样的查询场景,在ClickHouse中如何解决呢?最直接的⽅ 案就是使⽤MergeTree存储数据,然后通过GROUP BY聚合查询,并利⽤ SUM聚合函数汇总结果。这种⽅案存在两个问题。

1. 存在额外的存储开销:终端⽤户不会查询任何明细数据,只关⼼汇总结果,所以不应该⼀直保存所有的明细数据。

2. 存在额外的查询开销:终端⽤户只关⼼汇总结果,虽然 MergeTree性能强⼤,但是每次查询都进⾏实时聚合计算也是⼀种性能消耗。SummingMergeTree就是为了应对这类查询场景⽽⽣的。顾名思义,它能够在合并分区的时候按照预先定义的条件聚合汇总数据,将同⼀分组下的多⾏数据汇总合并成⼀⾏,这样既减少了数据⾏,⼜降低了后续汇总查询的开销。


1、未指定求和的字段 

drop table if exists summing_table;
CREATE TABLE summing_table
(id    String,city  String,sal   UInt32,comm  Float64,ctime DateTime
) ENGINE = SummingMergeTree()PARTITION BY toDate(ctime)ORDER BY (id, city)PRIMARY KEY id;
-- 在合并的时候 ,分区内, 相同排序的⾏数据的所有的数值字段都会求和(sum)
-- 插⼊数据
insert into summing_table
values
(1,'shanghai',10,20,'2021-06-12 01:11:12'),
(1,'shanghai',20,30,'2021-06-12 01:11:12'),
(3,'shanghai',10,20,'2021-11-12 01:11:12'),
(3,'Beijing',10,20,'2021-11-12 01:11:12') ;
optimize table summing_table ;select * from summing_table


2、指定求和的字段

上⾯的例⼦中没有指定sum的字段 ,那么表中符合要求的所有的数值字段都会进⾏求和 ,我们可以在建表的时候指定求和的字段。

drop table if exists summing_table2 ;
CREATE TABLE summing_table2(
id String,
city String,
money UInt32,
num UInt32,
ctime DateTime
)ENGINE = SummingMergeTree(money)
PARTITION BY toDate(ctime)
ORDER BY city ;
--每个城市每天的销售总额
insert into summing_table2 values(1,'BJ',100,11,now()),
(2,'BJ',100,11,now()),
(3,'BJ',100,11,now()),
(4,'NJ',100,11,now()),
(5,'NJ',100,11,now()),
(6,'SH',100,11,now()),
(7,'BJ',100,11,'2021-05-18 11:11:11'),
(8,'BJ',100,11,'2021-05-18 11:11:11') ;SELECT * FROM summing_table2 ;

总结:

(1)⽤ORBER BY排序键作为聚合数据的条件Key。

(2)只有在合并分区的时候才会触发汇总的逻辑。

(3)以数据分区为单位来聚合数据。当分区合并时,同⼀数据分区内聚合Key相同的数据会被合并汇总,⽽不同分区之间的数据则不会被汇总。

(4)如果在定义引擎时指定了columns汇总列(⾮主键的数值类 型字段),则SUM汇总这些列字段;如果未指定,则聚合所有⾮主键的数值类型字段。

(5)在进⾏数据汇总时,因为分区内的数据已经基于ORBER BY排序,所以能够找到相邻且拥有相同聚合Key的数据。

(6)在汇总数据时,同⼀分区内,相同聚合Key的多⾏数据会合并成⼀⾏。其中,汇总字段会进⾏SUM计算;对于那些⾮汇总字段,则会使⽤第⼀⾏数据的取值。

(7)⽀持嵌套结构,但列字段名称必须以Map后缀结尾。嵌套类 型中,默认以第⼀个字段作为聚合Key。除第⼀个字段以外,任何名称 以Key、Id或Type为后缀结尾的字段,都将和第⼀个字段⼀起组成复合 Key。

相关文章:

SummingMergeTree

假设有这样⼀种查询需求:终端⽤户只需要查询数据的汇总结果,不关⼼明细数据,并且数据的汇总条件是预先明确的(GROUP BY 条件明确,且不会随意改变)。 对于这样的查询场景,在ClickHouse中如何解决…...

JUC并发编程基础篇第一章之进程/并发/异步的概念[理解基本概念]

1. 进程和线程的概念 进程: 系统正在运行的一个应用程序;程序一旦运行就是一个进程;进程是资源分配的最小单位 线程: 是进程的实际运行单位;一个人进程可以并发控制多个线程,每条线程并行执行不同的任务 区别: 进程基本上相互独立的;而线程存在于进程内,是进程…...

c语言—指针进阶

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 给大家跳段街舞感谢支持&#xff01;ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ…...

总结二分法

杨辉三角形&#xff08;快速查找唯一值,mid型) //二分法解//流程&#xff1a;最大列->起点行->2k--n之间究竟哪一行&#xff08;二分排列组合&#xff09;->找到行数就等差数列对应位置#include<stdio.h> #include<stdlib.h>//注意排列组合的规律是建立在…...

二叉搜索树和AVL树

目录 一、二叉搜索树 1.什么是二叉搜索树 2.二叉搜索树的实现 &#xff08;1&#xff09;构建类 &#xff08;2&#xff09;查找函数 &#xff08;3&#xff09;插入函数 &#xff08;4&#xff09;删除函数 &#xff08;5&#xff09;补齐默认成员函数 &#xff08;6…...

计算机体系结构量化研究方法【2】高速缓存Cache

目录1.计算机存储层次结构2.缓存相关概念3.缓存组织方式4.Cache回写机制5.Cache性能量化1.计算机存储层次结构 计算机存储层次结构可以看作是一个金字塔&#xff0c;越靠上层&#xff0c;容量越小&#xff0c;速度越快 L0&#xff1a;寄存器----CPU的寄存器保存着Cache取出的…...

初识设计模式 - 迭代器模式

简介 迭代器设计模式&#xff08;Iterator Design Pattern&#xff09;&#xff0c;也叫作游标设计模式&#xff08;Cursor Design Pattern&#xff09;。 迭代器模式将集合对象的遍历操作从集合类中拆分出来&#xff0c;放到迭代器类中&#xff0c;让两者的职责更加单一。 …...

三路快排(基于三指针单趟排序的快速排序)+快排时间复杂度再分析

目录 一.前言 二. 三路快排 &#x1f60d;算法思想: &#x1f60d;算法实现步骤: &#x1f60d;三指针单趟排序的实现:​ &#x1f60d;非递归快排完全体: &#x1f914;与C标准库里的快排进行对比测试: 三.快排时间复杂度再分析 一.前言 http://t.csdn.cn/mz8dghttp://…...

Eyeshot Ultimate 2023 Crack

Eyeshot Ultimate 2023 Crack 已经引入了文档类。 工作区。文档现在包含绘制场景内容所需的所有数据。 2022版GEntities已被删除。 最后&#xff0c;一个真正的跨平台中立核心产品是可用的。 新功能 曲线、平面、曲面和体积网格。 屏幕空间环境光遮挡。 托管ReadDWG和ReadDXF类…...

JAVA-8-[SpringBoot]入门程序案例和原理分析

Spring Boot框架入门教程&#xff08;快速学习版&#xff09; Spring Boot教程BooTWiki.COM 1 Spring Boot Spring Boot是Pivotal(关键性的)团队在Spring的基础上提供的一套全新的开源框架&#xff0c;其目的是为了简化Spring应用的搭建和开发过程。Spring Boot去除了大量的X…...

前端工程化

一、AST &#xff08;抽象语法树&#xff0c;Abstract Syntax Tree&#xff09; 手把手带你走进Babel的编译世界 - 掘金 (juejin.cn) 1、概念 我们所写的代码转换为机器能识别的一种树形结构&#xff0c;本身是由一堆节点&#xff08;Node&#xff09;组成&#xff0c;每个节…...

【redis】单线程 VS 多线程(入门)

【redis】单线程 VS 多线程&#xff08;入门&#xff09; 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#…...

2023蓝桥杯Java研究生组赛题

蓝桥杯Java研究生组、JavaA组看过来&#xff0c;这两个组别题目基本一样 第一次参加了Java研究生组&#xff0c;Java组应该没有C/C那么卷吧&#xff0c;主要是觉得Java组可以避开很多ACM大佬&#xff0c;前面几题感觉难度还行没有特别难&#xff0c;后面几个大题依旧是没法做&a…...

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测 目录多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测&#xff0c;CNN-BiLSTM-Atte…...

微积分——Rolle定理的理解(罗尔定理)

极值定理(Extreme Value Theorem)指出&#xff0c;闭区间[a,b]上连续的函数既有最大值&#xff0c;也有最小值。然而&#xff0c;其最大最小值都可能发生在端点。罗尔定理(Rolle’s Theorem)以法国数学家Michel Rolle(1652-1719)的名字命名&#xff0c;它给出了极值存在于闭区间…...

linux内核之select/poll/epoll

一些主流应用IO多路复用技术&#xff0c;突破高并发问题&#xff0c;如nginx、redis、netty&#xff0c;分布式服务框架dubbo&#xff0c;大数据组件hadoop、spark、flink、hbase纷纷使用netty作为网络通信组件。 一、背景&#xff1a;C10K问题 The C10K problem 最早被Dan …...

文件流下载

文件下载 后端传给前端json数据流,前端拿到之后存放在自定义的文件中import axios from "axios"; import qs from "query-string"; import {Notification } from "@arco-design/web-vue"; // 接口中需要含有文件名fileName export function dow…...

C语言模拟实现:atoi函数

在实现atoi之前我们先来了解一下atoi函数的作用是什么&#xff1a; 目录 1.实例演示 2.模拟实现 2.1 判断是否为空指针 2.2判断是否为空字符串 2.3判断正负号 2.4判断非数字字符 2.5判断是否越界 2.6完整代码 1.实例演示 //实例演示 #include <stdio.h> #include …...

LeetCode.每日一题 2427. 公因子的数目

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法......感兴趣就关注我吧&#xff01;你定不会失望。 &#x1f308;个人主页&#xff1a;主页链接 &#x1f308;算法专栏&#xff1a;专栏链接 我会一直往里填充内容哒&#xff01; &…...

蓝牙BQB认证 - HFP profile配置说明

零.声明 本专栏文章我们会以连载的方式持续更新&#xff0c;本专栏计划更新内容如下&#xff1a; 第一篇:蓝牙综合介绍 &#xff0c;主要介绍蓝牙的一些概念&#xff0c;产生背景&#xff0c;发展轨迹&#xff0c;市面蓝牙介绍&#xff0c;以及蓝牙开发板介绍。 第二篇:Trans…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

Mac flutter环境搭建

一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...

以太网PHY布局布线指南

1. 简介 对于以太网布局布线遵循以下准则很重要&#xff0c;因为这将有助于减少信号发射&#xff0c;最大程度地减少噪声&#xff0c;确保器件作用&#xff0c;最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确&#xff0c;然…...

【Flask】:轻量级Python Web框架详解

什么是Flask&#xff1f; Flask是一个用Python编写的轻量级Web应用框架。它被称为"微框架"(microframework)&#xff0c;因为它核心简单但可扩展性强&#xff0c;不强制使用特定的项目结构或库。Flask由Armin Ronacher开发&#xff0c;基于Werkzeug WSGI工具包和Jin…...

【Mac 从 0 到 1 保姆级配置教程 16】- Docker 快速安装配置、常用命令以及实际项目演示

文章目录 前言1. Docker 是什么&#xff1f;2. 为什么要使用 Docker&#xff1f; 安装 Docker1. 安装 Docker Desktop2. 安装 OrbStack3. Docker Desktop VS OrbStack5. 验证安装 使用 Docker 运行项目1. 克隆项目到本地2. 进入项目目录3. 启动容器: 查看运行效果1. OrbStack 中…...