当前位置: 首页 > news >正文

用指针实现内存动态分配

导引:已知:变量在使用前必须被定义且安排好存储空间。且变量有这么一些分类:全局变量、静态局部变量【它们的储存一般是在编译时确定,在程序开始执行前完成。】自动变量【在执行进入变量定义所在的复合语句时为它们分配存储,变量的大小也是静态确定的。临时定义的变量】。这些都是我们在书写的时候就确定的,然后进行编译。

但是!!一般情况下,运行中的很多存储要求在写程序时无法确定。由此我们引入动态存储管理的概念【指的是  不是由编译系统分配的,而是由用户在程序中通过动态分配获取】

正文:动态内存分配能有效地使用内存,让同一段内存可以有不同的用途 ,因为它有这样两个特点:1.使用时申请 2.用完就释放。

动态内存分配的步骤:【c语言来说】1.;了解需要多少空间2.用c的动态存储分配函数来进行空间的分配储存空间3.使用指针指向该内存空间,用指针对内存空间进行修改4.内存完成使命过后,释放内存。

下面介绍几种分配函数:

(第一种函数:申请储存空间)1.malloc():写法如下:void *malloc(unsigned size)这表示malloc在(动态)存储区中开辟的函数大小为size。如果申请成功,那么就会返回一个指向所分配内存空间的起始地址的指针;如果不成功,那么返回NULL(它的值为0).【注意返回值类型:void *    它是通用指针的一个重要用途, 将malloc的返回值转换(自己动手)到特定指针类型,赋给一个指针】。

示例:if(  ( p=(int*)malloc(n*sizeof(int) ) ==NULL );printf("not able to allocate memory.");(int*)表示强制转换成int型的指针malloc(n*sizeof(int)就是分配函数sizeof(int)就是算字长,*  n代表我需要的空间。调用malloc时,用 sizeof 计算存储块大小

每次动态分配都要检查是否成功,考虑例外情况处理,而且虽然存储块是动态分配的,但它的大小在分配后也是确定的,不要越界使用。

        2.calloc:写法:void*calloc(unsinged n,unsigned size),这个函数有两个形参不同于malloc,它可以自动将储存块全部转化为0.

重复一遍:malloc对所分配的存储块不做任何事情 ,calloc对整个区域进行初始化 !!

(第二种函数:释放储存空间)1.free写法:void free(void *ptr).ptr作为指针,它指向要释放空间的首地址。

(第三种函数:分配调整函数)realloc:  写法:void realloc(void *ptr,unsigned size);此函数的作用是重新调整内存空间,ptr必须是以前动态分配得到的指针,unsigned size是重新需要的空间大小。        如果调整失败,那么ptr指向的储存块的内容不变,函数返回值NULL。如果调整成功,那么新的内存空间就是size,且要与原来的储存块一致(假如新的内存大一些,就在原有的基础上再补;如果新的储存块比较小,那么就取原来的储存块的前size部分)。

如果要确保指针学懂了,那么要确认这几点:1.掌握指针作为函数的参数进行熟练编程,通过函数调用改变主调函数变量的值    2.利用指针进行数组相关操作((1) 实参是数组名 (2) 形参是指针变量      可以写成数组形式)   3.能够使用字符串常用处理函数进行编程(包含在头文件string.h里面),并能使用字符指针进行字符串相关操作(利用指针指向系统原有的字符串)  4.通过指针实现动态内存分配。

相关文章:

用指针实现内存动态分配

导引:已知:变量在使用前必须被定义且安排好存储空间。且变量有这么一些分类:全局变量、静态局部变量【它们的储存一般是在编译时确定,在程序开始执行前完成。】自动变量【在执行进入变量定义所在的复合语句时为它们分配存储&#…...

DBSCAN聚类算法及Python实现

DBSCAN聚类算法 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,可以将数据点分成不同的簇,并且能够识别噪声点(不属于任何簇的点)。 DBSCAN聚类算法的基…...

风光及负荷多场景随机生成与缩减

目录 1 主要内容 计算模型 场景生成与聚类方法应用 2 部分程序 3 程序结果 4 程序链接 1 主要内容 该程序方法复现了《融合多场景分析的交直流混合微电网多时间尺度随机优化调度策略》3.1节基于多场景技术的随机性建模部分,该部分是随机优化调度的重要组成部分…...

lamda表达式

lamda表达式一. lamda表达式的特性二.常用匿名函数式接口2.1 Supplier接口2.2 Consumer接口2.3 Predicate接口2.4 Function接口2.5 BiFunction接口三.stream流传递先后顺序四.表达式4.1 ForEach4.2 Collect4.3 Filter4.4 Map4.5 MapToInt4.6 Distinct4.7 Sorted4.8 groupingBy4…...

MobTech 秒验|极速验证,拉新无忧

一、运营拓展新用户的难题 运营拓展新用户是每个应用都需要面对的问题,但是在实际操作中,往往会遇到一些困难。其中一个主要的难题就是注册和登录的繁琐性。用户在使用一个新的应用时,通常需要填写手机号、获取验证码、输入验证码等步骤&…...

大模型混战,阿里百度华为谁将成就AI时代的“新地基”?

从算力基础到用户生态,群雄逐鹿大模型 自2022年stable diffusion模型的进步推动AIGC的快速发展后,年底,ChatGPT以“破圈者”的姿态,快速“吸粉”亿万,在全球范围内掀起了一股AI浪潮,也促使了众多海外巨头竞…...

干翻Hadoop系列之:Hadoop前瞻之分布式知识

前言 一:海量数据价值 二:海量数据两个棘手问题 1:海量数据如何存储? 掌握分布式存储数据的思想。 A:方案1:单机存储磁盘不够加磁盘 限制问题: 1:一台计算机不能无限制拓充 2&a…...

MAE论文阅读《Masked Autoencoders Are Scalable Vision Learners》

文章目录动机方法写作方面参考Paper: https://arxiv.org/pdf/2111.06377.pdf 动机 首先简要介绍下BERT,NLP领域的BERT是基于Transformer架构,并采取无监督预训练的方式去训练模型。它提出的预训练方法在本质上是一种masked autoencoding,也就…...

代码随想录算法训练营第三十四天-贪心算法3| 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果

1005. Maximize Sum Of Array After K Negations 参考视频:贪心算法,这不就是常识?还能叫贪心?LeetCode:1005.K次取反后最大化的数组和_哔哩哔哩_bilibili 贪心🔍 的思路,局部最优&#xff…...

比较系统的学习 pandas (2)

pandas 数据读取与输出方法和常用参数 1、读取 CSV文件 pd.read_csv("pathname",step,encoding"gbk",header"infer",name[],skip_blank_linesTrue,commentNone) path : 文件路径 step : 指定分隔符,默认为 逗号 enco…...

怎么查看电脑主板最大支持多少内存?

很多电脑,内存不够用,但应速度慢;还有一些就是买了很大的内存条,但是还是反应慢;这是为什么呢?我今天明白了,原来每个电脑都有自己的适配内存,就是每个电脑能支持多大的内存&#xf…...

数据结构——线段树

线段树的结构 线段树是一棵二叉树,其结点是一条“线段”——[a,b],它的左儿子和右儿子分别是这条线段的左半段和右半段,即[a, (ab)/2 ]和[(ab)/2 ,b]。线段树的叶子结点是长度为1的单位线段[a,a1]。下图就是一棵根为[1,10]的线段树&#xff1…...

【C++进阶】实现C++线程池

文章目录1. thread_pool.h2. main.cpp1. thread_pool.h #pragma once #include <iostream> #include <vector> #include <queue> #include <thread> #include <mutex> #include <condition_variable> #include <future> #include &…...

Redis常用五种数据类型

一、Redis String字符串 1.简介 String类型在redis中最常见的一种类型 string类型是二制安全的&#xff0c;可以存放字符串、数值、json、图像数据 value存储最大数据量是512M 2. 常用命令 set < key>< value>&#xff1a;添加键值对 nx&#xff1a;当数据库中…...

C++ Primer第五版_第十一章习题答案(1~10)

文章目录练习11.1练习11.2练习11.3练习11.4练习11.5练习11.6练习11.7练习11.8练习11.9练习11.10练习11.1 描述map 和 vector 的不同。 map 是关联容器&#xff0c; vector 是顺序容器。 练习11.2 分别给出最适合使用 list、vector、deque、map以及set的例子。 list&#xff1a…...

GEE:使用LandTrendr进行森林变化检测详解

作者:_养乐多_ 本文介绍了一段用于地表变化监测的代码,该代码主要使用谷歌地球引擎(GEE)中的 Landsat 时间序列数据,采用了 Kennedy 等人(2010) 发布的 LandTrendr 算法,对植被指数进行分割,通过计算不同时间段内植被指数的变化来检测植被变化。 目录 一、加入矢量边界 …...

docker项目实施

鲲鹏916架构openEuler-arm64成功安装docker并跑通tomcat容器_闭关苦炼内功的技术博客_51CTO博客鲲鹏916架构openEuler-arm64成功安装docker并跑通tomcat容器&#xff0c;本文是基于之前这篇文章鲲鹏920架构arm64版本centos7安装docker下面开始先来看下系统版本卸载旧版本旧版本…...

springboot实现邮箱验证码功能

引言 邮箱验证码是一个常见的功能&#xff0c;常用于邮箱绑定、修改密码等操作上&#xff0c;这里我演示一下如何使用springboot实现验证码的发送功能&#xff1b; 这里用qq邮箱进行演示&#xff0c;其他都差不多&#xff1b; 准备工作 首先要在设置->账户中开启邮箱POP…...

Java 进阶(5) Java IO流

⼀、File类 概念&#xff1a;代表物理盘符中的⼀个⽂件或者⽂件夹。 常见方法&#xff1a; 方法名 描述 createNewFile() 创建⼀个新文件。 mkdir() 创建⼀个新⽬录。 delete() 删除⽂件或空⽬录。 exists() 判断File对象所对象所代表的对象是否存在。 getAbsolute…...

“终于我从字节离职了...“一个年薪40W的测试工程师的自白...

”我递上了我的辞职信&#xff0c;不是因为公司给的不多&#xff0c;也不是因为公司待我不好&#xff0c;但是我觉得&#xff0c;我每天看中我憔悴的面容&#xff0c;每天晚上拖着疲惫的身体躺在床上&#xff0c;我都不知道人生的意义&#xff0c;是赚钱吗&#xff1f;是为了更…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...