【STL十四】函数对象(function object)_仿函数(functor)——lambda表达式
【STL十四】函数对象(function object)_仿函数(functor)——lambda表达式
- 一、函数对象(function object)
- 二、函数对象优点
- 三、分类
- 四、头文件
- 五、用户定义函数对象demo
- 六、std::内建函数对象
- 1、 算术运算函数对象
- 2、比较
- 3、逻辑运算
- 4、位运算
- 七、lambda表达式
- 1、简介
- 2、作用
- 3、定义
- 4、最简单的demo
- 5、标准用法
- 6、变量捕获(capture clause)
一、函数对象(function object)
- 定义:定义了一个operator()的对象,就叫函数对象(function object)。
- 函数对象又被叫做仿函数(functor)。
注意:
- 函数对象是一个类(or结构体、模板类),不是一个函数。
- 函数对象重载“()”操作符,使得类可以像函数那样调用。
安装参数分
如果函数对象,有一个参数,叫一元函数对象。
如果函数对象,有二个参数,叫二元函数对象。
如果函数对象,有三个参数,叫多元函数对象。
二、函数对象优点
- 函数对象通常不定义构造函数和析构函数,所以在构造和析构不会发生问题
- 函数对象可以有自己的状态;(超出了普通函数的概念)
- 模板函数对象使得函数对象具有通用性。
三、分类
- 用户定义函数对象
- std::内置函数对象
- lambda表达式
四、头文件
- 用户自己定义的函数无头文件,
- std内建函数对象
头文件如下
// 内置函数对象
#include<functional>
五、用户定义函数对象demo
- Print就是函数对象
- Print()(“HELLO WORLD”);//匿名函数对象
#include <iostream>
//
using namespace std;class Print
{
public:void operator()(const char str[]){cout << str << endl;}
};int main() {Print ob;ob("hello world");Print()("HELLO WORLD");//匿名函数对象}
输出
hello world
HELLO WORLD
- 函数对象可以有自己的状态?
demo
#include <iostream>
//#include<functional>
using namespace std;class Print
{
public:void operator()(const char str[]){cout << str << endl;m_sum++;}int m_sum = 0;
};int main() {Print ob;ob("hello world");ob("hello jx");cout << ob.m_sum << endl;}
输出
hello world
hello jx
2
-
当然以上你可以写成模板,or同时重载int类型的,都是可以的
- 重载int类型的
#include <iostream>
//#include<functional>
using namespace std;struct Print
{
public:void operator()(const char str[]){cout << str << endl;}void operator()(int num){cout << num << endl;}
};int main() {Print ob;ob("hello world");Print()("HELLO WORLD");ob(110);}
- 模板函数对象使得含对象具有通用性?
- 模板
#include <iostream>
#include<string>
using namespace std;template<typename T>
class Print
{
public:void operator()(T temp){cout << temp << endl;m_sum++;}int m_sum = 0;
};int main() {Print<string> ob;ob("hello world");ob("hello jx");cout << ob.m_sum << endl;Print<int> ob2;ob2(123);ob2(123);
}
输出
hello world
hello jx
2
123
123
六、std::内建函数对象
- stl内建了一些函数对象,分为算术运算、比较、逻辑运算、位运算;
- 其实,这些内建函数对象,都是配合容器和算法使用的,但是我们还没有讲解郭算法,所以做个不设计算法的简单的demo.
1、 算术运算函数对象
- 1.1、分类
- 1.2、demo
#include <iostream>
#include<functional>
using namespace std;int main() {std::plus<int> add;cout << "add(2, 3) = " << add(2, 3) << endl; //2+3 = 5std::minus<int> sub;cout << "sub(2, 3) = " << sub(2, 3) << endl; //2-3 = -1std::multiplies<int> mul;cout << "mul(2, 3) = " << mul(2, 3) << endl; //2*3 = 6std::divides<int> div;cout << "div(2, 3) = " << div(2, 3) << endl; //2/3 = 0std::modulus<int> mod;cout << "mod(2, 3) = " << mod(2, 3) << endl; //2%3 = 2std::negate<int> neg;cout << "neg(2) = " << neg(2) << endl; //neg(2) = -2 }
输出
add(2, 3) = 5
sub(2, 3) = -1
mul(2, 3) = 6
div(2, 3) = 0
mod(2, 3) = 2
neg(2) = -2
2、比较
- 2.1、分类
- 2.2、demo
#include <iostream>
#include<functional>
using namespace std;int main() {std::equal_to<int> ob1;cout << "ob1(1, 2) = " << ob1(1, 2) << endl;std::not_equal_to<int> ob2;cout << "ob2(1, 2) = " << ob2(1, 2) << endl;std::greater<int> ob3;cout << "ob3(1, 2) = " << ob3(1, 2) << endl;std::less<int> ob4;cout << "ob4(1, 2) = " << ob4(1, 2) << endl;std::greater_equal<int> ob5;cout << "ob5(1, 2) = " << ob5(1, 2) << endl;std::less_equal<int> ob6;cout << "ob6(1, 2) = " << ob6(1, 2) << endl;
}
输出
ob1(1, 2) = 0
ob2(1, 2) = 1
ob3(1, 2) = 0
ob4(1, 2) = 1
ob5(1, 2) = 0
ob6(1, 2) = 1
3、逻辑运算
- 3.1、分类
- 3.2、demo
#include <iostream>
#include<functional>
using namespace std;int main() {std::logical_and<bool> l_and;cout << "l_and(1, 0) = " << l_and(1, 0) << endl;std::logical_or<int> l_or;cout << "l_or(1, 0) = " << l_or(1, 0) << endl; std::logical_not<int> l_not;cout << "l_not(2) = " << l_not(2) << endl;
}
输出
l_and(1, 0) = 0
l_or(1, 0) = 1
l_not(2) = 0
4、位运算
- 4.1、分类
- demo
- 1、“与” 运算(&):只有两个位都是1的时候结果才是1,否则是0;如1&1=1,1&0=0,0&1=0,0&0=0
- 2、“或” 运算(|):只要有一个是1,结果就是1。如:1|0=1,0|1=1,1|1=1,0|0=0
- 3、“异或” 运算(^):相同为0,不同为1;0|0=0,0|1=1,1|0=1,1|1=0
- 4、取反运算(~):就是0=1,1=0
#include <iostream>
#include<functional>
using namespace std;int main() {std::bit_and<int> b_and;cout << "b_and(1, 2) = " << b_and(1, 2) << endl;std::bit_or<int> b_or;cout << "b_or(1, 2) = " << b_or(1, 2) << endl;std::bit_xor<int> b_xor;cout << "b_xor(2,3) = " << b_xor(2,3) << endl;std::bit_not<bool> b_not;cout << "b_not(1) = " << b_not(1) << endl;
}
输出
b_and(1, 2) = 0
b_or(1, 2) = 3
b_xor(2,3) = 1
b_not(1) = 1
bit_not有问题,因为bool的取反,应该是0,但是输出是1,原因未知;
七、lambda表达式
使用 STL 时,往往会大量用到函数对象,为此要编写很多函数对象类。有的函数对象类只用来定义了一个对象,而且这个对象也只使用了一次,编写这样的函数对象类就有点浪费。
而且,定义函数对象类的地方和使用函数对象的地方可能相隔较远,看到函数对象,想要查看其 operator() 成员函数到底是做什么的也会比较麻烦。
- 对于只使用一次的函数对象类,能否直接在使用它的地方定义呢?Lambda 表达式能够解决这个问题。使用 Lambda 表达式可以减少程序中函数对象类的数量,使得程序更加优雅。
1、简介
- lambda expressions = lambda表达式(也叫闭包——Colsure)
- lambda表达式也是匿名函数对象
- lambda表达式也是一种仿函数、
2、作用
- 很方便的定义函数、并被别的函数调用。
3、定义
Lambda 表达式的定义形式如下:
[]中括号里面是一下捕获变量,或者为空。
[捕获变量] (参数表) -> 返回值类型
{函数主体
}auto f=[](int a, int b) ->int
{
return a+b;
};
“捕获变量”可以是=或&,表示{}中用到的、定义在{}外面的变量在{}中是否允许被改变。=表示不允许,&表示允许。当然,在{}中也可以不使用定义在外面的变量。“-> 返回值类型”可以省略。
4、最简单的demo
#include <iostream>
#include<vector>
#include<functional>
using namespace std;int main() {auto f = [](int a, int b){return a < b;};cout << f(2, 3);
}
输出
1
5、标准用法
#include <iostream>
#include<vector>
#include<functional>
using namespace std;int main() {// 定义lambda表达式,不使用变量捕获auto f = [](int a, int b) ->int{return a + b;};cout << f(1, 2) << endl;
}
输出
3
6、变量捕获(capture clause)
#include <iostream>
#include<vector>
#include<functional>
using namespace std;int main() {int M = 10;int N = 3;auto f = [&M, N](int a) ->int{M = 20;return N*a;};cout << f(3) << endl;cout << M << endl;
}
输出
9
20
- 变量捕获:就是方括号中的部分,让我们的匿名函数可以访问、甚至修改函数外部的变量。
- 如果是空,表示不捕获任何变量。
- [&M]——如果变量前有引用&,则是按引用捕获——可以修改外围变量的值。
- [M]——如果变量前没引用&,则是按值捕获——不可以修改外围变量的值。
- [&]——只写引用,按照引用捕获所有的封闭范围中的变量;
- [=]——只写等号,所有变量都按值捕获;
- [&, = M]——单独制定一些变量按照值捕获,其他变量按照引用捕获;
- [this]——如果在某个class中使用匿名函数,可以使用this捕获当前实例的指针。
- c++17后还可以使用[*this]按值捕获该实例。
- c++14后,可以在捕获语句中定义新的变量,并初始化。(这些变量无需出现在匿名函数外围环境中)
auto f = [&M, N, k=5](int a) ->int{M = 20;return N*a*k;};
- c++14后,参数列表支持auto类型
[](auto a, auto b){return a+b;}
参考:
1、C++ STL 容器库 中文文档
2、STL教程:C++ STL快速入门
3、https://www.apiref.com/cpp-zh/cpp/header.html
4、https://en.cppreference.com/w/cpp/container
5、哔哩哔哩_HexUp_清晰易懂,现代C++最好用特性之一:Lambda表达式用法详解
6、WIKI教程_C ++标准库_C++ Library - <iterator>
相关文章:

【STL十四】函数对象(function object)_仿函数(functor)——lambda表达式
【STL十四】函数对象(function object)_仿函数(functor)——lambda表达式 一、函数对象(function object)二、函数对象优点三、分类四、头文件五、用户定义函数对象demo六、std::内建函数对象1、 算术运算函…...
如何写出高质量的前端代码
写出高质量的前端代码是每个前端开发人员的追求。在一个复杂的项目中,代码质量对于项目的可维护性、可扩展性和可读性都有很大的影响。本文将介绍一些如何写出高质量前端代码的技巧和最佳实践。 一、注重代码结构和组织 1.1 遵循一致的命名规范 命名规范是编写高…...

YOLOv7如何提高目标检测的速度和精度,基于优化算法提高目标检测速度
目录 一、学习率调度二、权重衰减和正则化三、梯度累积和分布式训练1、梯度累积2、分布式训练 四、自适应梯度裁剪 大家好,我是哪吒。 上一篇介绍了YOLOv7如何提高目标检测的速度和精度,基于模型结构提高目标检测速度,本篇介绍一下基于优化算…...
CentOS 7中安装配置Nginx的教程指南
1. 安装Nginx 在终端中执行以下命令以安装Nginx: sudo yum install epel-release sudo yum install nginx安装完成后的 Nginx 内容通常会被安装在以下目录下: /etc/nginx: 该目录包含 Nginx 的配置文件,包括 nginx.conf 和 conf.d 目录下的…...
Vicuna- 一个类 ChatGPT开源 模型
Meta 开源 LLaMA(大羊驼)系列模型为起点,研究人员逐渐研发出基于LLaMA的Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型并开源。 google提出了一个新的模型:Vicuna(小羊驼)。该模型基于LLaMA,参数量13B。Vicuna-13B 通过微调 LLaMA 实现了高性能…...

5.1 数值微分
学习目标: 作为数值分析的基础内容,我建议你可以采取以下步骤来学习数值微分: 掌握微积分基础:数值微分是微积分中的一个分支,需要先掌握微积分基础知识,包括导数、极限、微分等。 学习数值微分的概念和方…...

云计算服务安全评估办法
云计算服务安全评估办法 2019-07-22 14:46 来源: 网信办网站【字体:大 中 小】打印 国家互联网信息办公室 国家发展和改革委员会 工业和信息化部 财政部关于发布《云计算服务安全评估办法》的公告 2019年 第2号 为提高党政机关、关键信息基础设施运营者…...

laravel5.6.* + vue2 创建后台
本地已经安装好了composer 1.新建 Laravel5.6.*项目 composer create-project --prefer-dist laravel/laravel laravel5vue2demo 5.6.* 2. cd laravel5vue2demo 3. npm install /routes/web.php 路由文件中, 修改 Route::get(/, function () {return view(index); });新建…...

Python自动化sql注入:布尔盲注
在sql注入时,使用python脚本可以大大提高注入效率,这里演示一下编写python脚本实现布尔盲注的基本流程: 演示靶场:sqli-labs 布尔盲注 特点:没有回显没有报错,但根据sql语句正常与否返回不同结果&#x…...
Microsoft Defender for Office 365部署方案
目录 前言 一、Microsoft Defender for Office 365 部署架构 1、部署环境 2、Microsoft Defender for Office 365 核心服务...

字节岗位薪酬体系曝光,看完感叹:不服真不行
曾经的互联网是PC的时代,随着智能手机的普及,移动互联网开始飞速崛起。而字节跳动抓住了这波机遇,2015年,字节跳动全面加码短视频,从那以后,抖音成为了字节跳动用户、收入和估值的最大增长引擎。 自从字节…...
华为OD机试-高性能AI处理器-2022Q4 A卷-Py/Java/JS
某公司研发了一款高性能AI处理器。每台物理设备具备8颗AI处理器,编号分别为0、1、2、3、4、5、6、7。 编号0-3的处理器处于同一个链路中,编号4-7的处理器处于另外一个链路中,不同链路中的处理器不能通信。 现给定服务器可用的处理器编号数组…...

Vue - 实现垂直菜单分类栏目,鼠标移入后右侧出现悬浮二级菜单容器效果(完整示例源码,详细代码注释,一键复制开箱即用)
前言 网上的教程都太乱了,各种杂乱无注释代码、图片资源丢失、一堆样式代码,根本无法改造后应用到自己的项目中。 本文实现了 在 Vue / Nuxt 项目中,垂直分类菜单项,当用户鼠标移入菜单后,右侧自动出现二级分类悬浮容器盒子效果, 您可以直接复制源码,然后按照您的需求再…...

NVM-无缝切换Node版本
NVM-无缝切换Node版本 如果未使用nvm之前已经下载了node,并且配置了环境变量,那么此时删除这些配置(Node的环境以及Node软件),使用nvm是为了在某些项目中使用低版本的node NVM下载 进入github的nvm readme: https://github.com/coreybutler/nvm-windows…...

CCF-CSP真题《202303-1 田地丈量》思路+python,c++满分题解
想查看其他题的真题及题解的同学可以前往查看:CCF-CSP真题附题解大全 试题编号:202303-1试题名称:田地丈量时间限制:1.0s内存限制:512.0MB问题描述: 问题描述 西西艾弗岛上散落着 n 块田地。每块田地可视为…...
Autosar-软件架构
文章目录 一、Autosar软件架构分层图二、应用层三、RTE层四、BSW层1、微控制器抽象层2、ECU抽象层I/O硬件抽象COM硬件抽象Memory硬件抽象Onboard Device Abstraction3、复杂驱动层4、服务层系统服务通信服务CAN一、Autosar软件架构分层图 架构分层是实现软硬件分离的关键,它也…...

8年测开年薪30W,为什么从开发转型为测试?谈谈这些年的心路历程……
谈谈我的以前,从毕业以来从事过两个多月的Oracle开发后转型为软件测试,到现在已近过去8年成长为一个测试开发工程师,总结一下之间的心路历程,希望能给徘徊在开发和测试之前的同学一点小小参考。 一、测试之路伏笔 上学偷懒&#…...

滑动奇异频谱分析:数据驱动的非平稳信号分解工具(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

updateByPrimaryKey和updateByPrimaryKeySelective的区别
版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl MyBatis Generator概述 MyBatis Generator是一个专门为MyBatis框架使用者定制的代码生成器,它可以快速的根据表生成对应的映射文件、接口文件、POJO。而且&#…...

【ARM Coresight 4 - Rom Table 介紹】
文章目录 1.1 ROM Table1.1.1 Entry 寄存器 1.2 ROM Table 例子 1.1 ROM Table 在一个SoC中,有多个Coresight 组件,但是软件怎么去识别这些 Coresight 组件,去获取这些Coresight 组件的信息了?这个时候,就需要靠 Core…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技
无需布线的革命:电力载波技术赋能楼宇自控系统 在楼宇自动化领域,传统控制系统依赖复杂的专用通信线路,不仅施工成本高昂,后期维护和扩展也极为不便。电力载波技术(PLC)的突破性应用,彻底改变了…...
接口 RESTful 中的超媒体:REST 架构的灵魂驱动
在 RESTful 架构中,** 超媒体(Hypermedia)** 是一个核心概念,它体现了 REST 的 “表述性状态转移(Representational State Transfer)” 的本质,也是区分 “真 RESTful API” 与 “伪 RESTful AP…...
使用python进行图像处理—图像滤波(5)
图像滤波是图像处理中最基本和最重要的操作之一。它的目的是在空间域上修改图像的像素值,以达到平滑(去噪)、锐化、边缘检测等效果。滤波通常通过卷积操作实现。 5.1卷积(Convolution)原理 卷积是滤波的核心。它是一种数学运算,…...

Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...
GB/T 43887-2024 核级柔性石墨板材检测
核级柔性石墨板材是指以可膨胀石墨为原料、未经改性和增强、用于核工业的核级柔性石墨板材。 GB/T 43887-2024核级柔性石墨板材检测检测指标: 测试项目 测试标准 外观 GB/T 43887 尺寸偏差 GB/T 43887 化学成分 GB/T 43887 密度偏差 GB/T 43887 拉伸强度…...
Shell 解释器 bash 和 dash 区别
bash 和 dash 都是 Unix/Linux 系统中的 Shell 解释器,但它们在功能、语法和性能上有显著区别。以下是它们的详细对比: 1. 基本区别 特性bash (Bourne-Again SHell)dash (Debian Almquist SHell)来源G…...
后端下载限速(redis记录实时并发,bucket4j动态限速)
✅ 使用 Redis 记录 所有用户的实时并发下载数✅ 使用 Bucket4j 实现 全局下载速率限制(动态)✅ 支持 动态调整限速策略✅ 下载接口安全、稳定、可监控 🧩 整体架构概览 模块功能Redis存储全局并发数和带宽令牌桶状态Bucket4j Redis分布式限…...