43岁程序员,投了上万份简历都已读不回,只好把年龄改成40岁,这才有了面试机会,拿到了offer!...
40多岁找工作有多难?
一位43岁的程序员讲述了自己找工作的经历:
80年,大专,目前没到43周岁,年前被裁,简历上的年龄是42岁,两个多月投了上万份简历,99.5%是已读未回。后来改变策略把简历改到40岁,回复率增多,有了面试机会,拿到了offer。用人部门问的时候就说简历写错了,一般大家心里都清楚是怎么回事,只要用人部门通过了,hr就不追究那两岁了。
楼主感叹,40岁的坎太难了,实在是没办法,不然hr都不收简历,连面试的机会都没有。

有人说,年龄真是个坎,本来和几家公司谈的差不多了,一问年龄就没下文了。

有人说,办法总比困难多。

有人说,这都是被逼的。

有人说,其实hr也希望楼主能入职,他能多拿绩效。

有人问楼主,新公司知道他是被裁员的吗?
答:知道,除了说简历写错了之外,其他都实话实说,包括年龄。

有人说,自己也有同样的经历,看来有些企业的最大年龄是40岁。

楼主说,其实是hr为了省事,把40岁以上的人都过滤掉了,用人部门差一两岁也不在乎,都是公司和hr设的坎。

有人说楼主鬼扯,面试通过还要背调,哪家公司连身份证号都没有就发offer?
答:面试通过,问年龄就实话实说了,改年龄只是求一个面试机会,入职资料上都有身份证信息。


有人说,这属于作假行为,公司随时可以以提交虚假入职信息辞退楼主,是合法辞退。


楼主说,入职信息都是真实的,年龄也是真实的,入职前已经把事情说明了,不存在虚假。

有人说,简历上不要写年龄。

有人说,可以去小企业,应该问题不大。


楼主说,小厂要求更严,现在刚成立的创业公司都要985、211。

有人说楼主还不够狠,自己49岁改29岁也顺利入职了。

有人说,自己都说实际年龄小,是家人改大了,为了早结婚。

有人说,这个岁数早该转管理了,如果还是开发岗肯定不好找了。

还有人说,不是不好找工作,主要是很多人习惯拿着昨日的资历慷他人之慨,吃老板未来的饭。

如今的大环境和市场对大龄打工人太不友好了,逼的大家八仙过海各显神通。诚信固然重要,但生存更重要,打工人的许多花招都不过是在潜规则下的生存绝学。如果不是为了谋一份工作,如果公司和hr更看重能力而不是年龄,想必没有几个人愿意冒着风险简历造假。毕竟能通过诚实得到的东西,谁愿意通过撒谎来获取呢?
大龄打工人如果面试机会渺茫,不妨也尝试一下楼主的办法,但改年龄要注意以下两点:第一,不要跟实际年龄相差太大;第二,面试通过后要主动告知,以免假戏真做。
另外,修改年龄只是给自己一块面试的敲门砖,真正能让你拿到offer的是大龄背后的丰富经验和能力。所以,任何时候都不要虚度光阴,让自己保持成长才是最重要的。
相关文章:
43岁程序员,投了上万份简历都已读不回,只好把年龄改成40岁,这才有了面试机会,拿到了offer!...
40多岁找工作有多难? 一位43岁的程序员讲述了自己找工作的经历: 80年,大专,目前没到43周岁,年前被裁,简历上的年龄是42岁,两个多月投了上万份简历,99.5%是已读未回。后来改变策略把简…...
MySQL分区表相关知识总结
1.创建分区表: create table t(col11 int null, col22 …) engineinnodb partition by hash(col33) partitions 44; create table t(col11 int null, col22 …) engineinnodb partition by range(id) (partition p0 values less than (10), partition p1 values les…...
outlook邮箱pc/mac客户端下载 含最新版
新的 Outlook for Windows or mac 为 Outlook 应用带来了最新功能、智能辅助功能和新的新式简化设计。 你可以根据自己的风格定制它,并使用新的 Outlook for Windows/mac 执行更多操作! 览版,与我们一起开始旅程,并帮助我们塑造新…...
缓存雪崩、缓存穿透、缓存击穿分别是什么?如何解决?
缓存中存放的大多都是热点数据,目的就是从缓存中获取数据,而不用直接访问数据库,从而提高查询效率 缓存雪崩 概念 指缓存在同一时间大面积失效,后面的请求直接访问数据库,导致数据库短时间内压力过大而崩溃ÿ…...
VBA实战篇学习笔记02 Err错误处理
文章目录 专题VI 错误处理课时38 常见错误类型错误代码13 :类型不匹配错误代码91: 对象变量或者with变量未设置错误代码1004: 视具体错误类型而变化 课时39 Err错误处理On Error Resume Next :Resume语句:Resume Next语句:未知错误:Exit SubOn Error Goto 0 专题VI 错误处理 课…...
【Git】拉取代码/提交代码
1.从将本地代码放入远程仓库 (如果有分支的情况) [git checkout xx切换分支后 git add . 将本地所有改动文件新增 commit之后 git push(将代码全部提交)] 分支操作 #查看分支 git branch #创建分支 git branch test #切换分支 git checkout test #修改代码 #提交代码git ad…...
产品预览 | 系统仿真与三维专业场仿真融合——MWORKS模型降阶工具箱
1 引言 近二十年来,数字化技术迅猛发展,以美国和中国提出装备数字工程为标志,人类迈入全新的数字化时代。装备数字化需要对装备的运行状态和行为进行准确的模拟和预测,这就需要利用系统仿真技术。系统仿真技术能够综合考虑装备的…...
我们都遇到过的这些ajax代码到底什么意思?
hello,我是小索奇,本篇文章给大家带来ajax中常用的一些代码,为什么写这些呢? 因为小索奇也看黑马、尚硅谷等老师的视频,在学习java的时候经常会介绍ajax,导致很多不了解的伙伴一脸懵然,以防万一…...
TiDB实战篇-TiCDC
目录 简介 原理 使用场景 使用限制 硬件配置 部署 在安装TiDB的时候部署 扩容部署 操作 管理CDC 管理工具 查看状态 创建同步任务 公共参数 CDC任务同步到MySQL实战 同步命令 查看所有的同步任务 同步任务的状态 管理同步任务 查看一个同步信息的具体情况 …...
ElasticSearch第十七讲 ES索引别名的使用
索引别名 ES中可以为索引添加别名,一个别名可以指向到多个索引中,同时在添加别名时可以设置筛选条件,指向一个索引的部分数据,实现在关系数据库汇总的视图功能,这就是ES中别名的强大之处。别名是一个非常实用的功能,为我们使用索引提供了极大的灵活性,许多ES的API都支持…...
第二个机器学习应用:乳腺癌数据集在决策树模型上的挖掘
目录 决策树优化与可视化 1 决策树分类 2 决策树可视化 3 显示树的特征重要性 特征重要性可视化 决策树回归 1 决策树回归 决策树优化与可视化 1 决策树分类 from sklearn.datasets import load_breast_cancer from sklearn.tree import DecisionTreeClassifier from sk…...
前端canvas截图酷游地址的方法!
前情提要 想在在JavaScript中,酷游专员KW9㍠ㄇEㄒ提供用HTML5的Canvas元素来剪取画面并存成SVG或PNG。 程式写法(一) 首先,需要在HTML中创建一个Canvas元素<canvas id"myCanvas"></canvas> 在JavaScript中,使用canv…...
2018年入学,2021年入职
2018年的春天,凌晨紧张地查着考研成绩,运气好,384,远远超出了我的预期“能进复试就行”,秉承着“尽人事,知天命”的格言,坚持复习完,坚持到考试最后一秒。 在考试之前,我…...
python+nodejs+ssm+vue 基于协同过滤的旅游推荐系统
本文首先介绍了旅游推荐的发展背景与发展现状,然后遵循软件常规开发流程,首先针对系统选取适用的语言和开发平台,根据需求分析制定模块并设计数据库结构,再根据系统总体功能模块的设计绘制系统的功能模块图,流程图以及…...
【STL十四】函数对象(function object)_仿函数(functor)——lambda表达式
【STL十四】函数对象(function object)_仿函数(functor)——lambda表达式 一、函数对象(function object)二、函数对象优点三、分类四、头文件五、用户定义函数对象demo六、std::内建函数对象1、 算术运算函…...
如何写出高质量的前端代码
写出高质量的前端代码是每个前端开发人员的追求。在一个复杂的项目中,代码质量对于项目的可维护性、可扩展性和可读性都有很大的影响。本文将介绍一些如何写出高质量前端代码的技巧和最佳实践。 一、注重代码结构和组织 1.1 遵循一致的命名规范 命名规范是编写高…...
YOLOv7如何提高目标检测的速度和精度,基于优化算法提高目标检测速度
目录 一、学习率调度二、权重衰减和正则化三、梯度累积和分布式训练1、梯度累积2、分布式训练 四、自适应梯度裁剪 大家好,我是哪吒。 上一篇介绍了YOLOv7如何提高目标检测的速度和精度,基于模型结构提高目标检测速度,本篇介绍一下基于优化算…...
CentOS 7中安装配置Nginx的教程指南
1. 安装Nginx 在终端中执行以下命令以安装Nginx: sudo yum install epel-release sudo yum install nginx安装完成后的 Nginx 内容通常会被安装在以下目录下: /etc/nginx: 该目录包含 Nginx 的配置文件,包括 nginx.conf 和 conf.d 目录下的…...
Vicuna- 一个类 ChatGPT开源 模型
Meta 开源 LLaMA(大羊驼)系列模型为起点,研究人员逐渐研发出基于LLaMA的Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型并开源。 google提出了一个新的模型:Vicuna(小羊驼)。该模型基于LLaMA,参数量13B。Vicuna-13B 通过微调 LLaMA 实现了高性能…...
5.1 数值微分
学习目标: 作为数值分析的基础内容,我建议你可以采取以下步骤来学习数值微分: 掌握微积分基础:数值微分是微积分中的一个分支,需要先掌握微积分基础知识,包括导数、极限、微分等。 学习数值微分的概念和方…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
