当前位置: 首页 > news >正文

C4D R26 渲染学习笔记 建模篇(3):生成器

文章目录

  • 前文回顾
    • 介绍篇
    • 建模篇
  • 生成器介绍
    • 生成器
    • 变形器
    • 搭配举例
  • 生成器详细介绍
    • 细分曲面
    • 布料曲面
  • 未完待续

前文回顾

介绍篇

C4D R26 渲染学习笔记(1):C4D版本选择和初始UI框介绍
C4D R26 渲染学习笔记(2):渲染流程介绍
C4D R26 渲染学习笔记(3):物体基本操作+快捷键

建模篇

C4D R26 渲染学习笔记 建模篇(0):建模常识
C4D R26 渲染学习笔记 建模篇(1):参数模型
C4D R26 渲染学习笔记 建模篇(2):手动建模

生成器介绍

生成器是我自己的说法,主要是如下绿色的按钮。和生成器对应的就是变形器生成器的特点就是可以无中生有,而变形器要有原型。而且生成器变形器的层级关系为生成器在上层,变形器在下面。
在这里插入图片描述

生成器

在这里插入图片描述

变形器

在这里插入图片描述

搭配举例

在这里插入图片描述

我会在下篇文章中介绍变形器如何使用

生成器详细介绍

按住(Alt+左键),快速添加上层生成器
在这里插入图片描述

细分曲面

类似于柔化,柔化过滤。

在这里插入图片描述

布料曲面

布料曲面细分曲面的区别。布料曲面会突出转折点,细分曲面会柔化转折点。

在这里插入图片描述

未完待续

相关文章:

C4D R26 渲染学习笔记 建模篇(3):生成器

文章目录 前文回顾介绍篇建模篇 生成器介绍生成器变形器搭配举例 生成器详细介绍细分曲面布料曲面 未完待续 前文回顾 介绍篇 C4D R26 渲染学习笔记(1):C4D版本选择和初始UI框介绍 C4D R26 渲染学习笔记(2)&#xff…...

智慧梁场3D建模

智慧梁场3D建模:数字化革命下的新起点 ​ 随着科技的迅猛发展,数字化已经成为了现代工业生产的必然趋势。作为传统工业的核心产业,建筑行业也在不断地探索数字化变革的新路径。而“智慧梁场3D建模”便是其中的一项杰出实践。 ​ 梁场是建筑…...

《程序员面试金典(第6版)》面试题 02.08. 环路检测(哈希法,双指针,检测链表是否有环)

题目描述 给定一个链表,如果它是有环链表,实现一个算法返回环路的开头节点。若环不存在,请返回 null。 题目传送门:面试题 02.08. 环路检测 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链…...

软考A计划-试题模拟含答案解析-卷六

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分享&am…...

Linux 上的 .NET 崩溃了怎么抓 Dump

一:背景 1. 讲故事 训练营中有朋友问在 Linux 上如何抓 crash dump,在我的系列文章中演示的大多是在 Windows 平台上,这也没办法要跟着市场走,谁让 .NET 的主战场在工控 和 医疗 呢,上一张在 合肥 分享时的一个统计图…...

QT桌面项目(状态栏和导航栏设置)

文章目录 前言一、状态栏二、导航栏三、同时添加状态栏和导航栏总结 前言 为了和我们这个项目做的更加真实,这里为我们的项目添加上状态栏和导航栏让他变成更加接近手机的桌面效果。 一、状态栏 这个状态栏就是显示时间和wifi状态,电池电量的&#xf…...

数据链路层:点对点协议PPP

数据链路层:点对点协议PPP 笔记来源: 湖科大教书匠:点对点协议PPP 声明:该学习笔记来自湖科大教书匠,笔记仅做学习参考 数据链路层只负责直接相连的两个结点之间的通信 PPP是点对点数据链路层协议 用户通过ISP接入因特…...

C/C++读取txt文件中的float数据并用指针存储

C语言中读取txt文件中的数据 以下是一个简单的示例代码&#xff0c;演示如何在C语言中读取txt文件中的数据&#xff1a; #include <stdio.h>int main() {FILE *fp;char buffer[100];// 打开文件fp fopen("example.txt", "r");// 如果文件打开失败…...

对KMP算法的一点碎碎念——上篇

对KMP算法的一点碎碎念——上篇 文章目录 对KMP算法的一点碎碎念——上篇1. KMP 算法 Next数组 求解问题1.1 前置知识-最长公共前后缀LCP1.1.1 前缀与后缀1.1.2 最长公共前后缀LCP 1.2 手算法求解 Next数组值(3种常见情况)1.2.1 情况1: next数组 正常存放匹配字符的长度情况1的…...

算法---边界着色

题目 给你一个大小为 m x n 的整数矩阵 grid &#xff0c;表示一个网格。另给你三个整数 row、col 和 color 。网格中的每个值表示该位置处的网格块的颜色。 两个网格块属于同一 连通分量 需满足下述全部条件&#xff1a; 两个网格块颜色相同 在上、下、左、右任意一个方向上…...

二叉排序树的查找、插入、删除

目录 二叉排序树的定义 二叉排序树的查找 二叉排序树的插入 二叉排序树的定义 二叉排序树的定义 二叉排序树&#xff08;Binary Sort Tree&#xff0c; BST&#xff09;&#xff0c;也称二叉查找树。 二叉排序树或者是一棵空树&#xff0c;或者是一棵具有下列特性的非空二叉…...

《Opencv3编程入门》学习笔记—第三章

《Opencv3编程入门》学习笔记 记录一下在学习《Opencv3编程入门》这本书时遇到的问题或重要的知识点。 第三章 HighGUI图形用户界面初步 一、图像的载入、显示和输出到文件 &#xff08;一&#xff09;OpenCV的命名空间 简单的OpenCV程序标配&#xff1a; #include <o…...

如何从Ubuntu Linux中删除Firefox Snap?

Ubuntu Linux是一款广受欢迎的开源操作系统&#xff0c;拥有强大的功能和广泛的应用程序选择。默认情况下&#xff0c;Ubuntu提供了一种称为Snap的软件打包格式&#xff0c;用于安装和管理应用程序。Firefox是一款流行的开源网络浏览器&#xff0c;而Firefox Snap是Firefox的Sn…...

数学建模的初阶-快速上手

目录 第一步&#xff1a;明确问题 第二步&#xff1a;选择建模方法 第三步&#xff1a;收集数据 第四步&#xff1a;构建数学模型 第五步&#xff1a;模型验证与评估 数学建模软件推荐 统计模型 (1) 线性回归模型 (2) 逻辑回归模型 (3) 时间序列模型 优化模型 (1) …...

复习向 C/C++ 编程语言简介和概括(C++复习向p1)

文章目录 C 编程语言C 和 C 关系标准的 C 组成ANSI 标准比较重要的标准化时间 C 编程语言 是一种静态类型的、编译式的、通用式的、大小写敏感、不规则的编程语言支持过程化编程&#xff0c;面向对象&#xff0c;泛型编程 C 和 C 关系 C 是 C 的一个超集&#xff0c;任何合法…...

DRF之过滤,排序,分页

一、权限组件源码解读 1.继承了APIView 才有的---》执行流程---》dispatch中----》三大认证 APIView的dispatch def initial(self, request, *args, **kwargs):self.perform_authentication(request)self.check_permissions(request)self.check_throttles(request) 2 读…...

我的Redis学习,共写了14篇博客文章

早在19和20年全面学习SpringBoot相关技术知识时也曾经有学习到Redis&#xff0c;主要是看了几家的视频教程&#xff0c;但是未曾有具体的实践&#xff0c;后来再学习到Docker和Spring Session框架的Redis存储时&#xff0c;又稍微的实践了一丢丢&#xff0c;所有的实践也就仅此…...

mPython软件使用指南

①软件界面 一、软件界面的介绍 1.模式切换 硬件编程 Python3.6 Jupyter python3.6模式细节补充&#xff08;一般不使用该模式&#xff0c;此处可跳过&#xff09; Python3.6模式的界面 左侧指令分类栏 Python3.6模式的图形化指令分类分为&#xff1a; Python语法基础相关指令&…...

龙芯2K1000实战开发-系统配置详解

目录 概要 整体架构流程 技术名词解释 技术细节 ​编辑 总结...

【一起撸个DL框架】5 实现:自适应线性单元

CSDN个人主页&#xff1a;清风莫追欢迎关注本专栏&#xff1a;《一起撸个DL框架》GitHub获取源码&#xff1a;https://github.com/flying-forever/OurDLblibli视频合集&#xff1a;https://space.bilibili.com/3493285974772098/channel/series 文章目录 5 实现&#xff1a;自适…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...