迷宫出口问题求解(DFS)
题面
一天Extense在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由 n×n 的格点组成,每个格点只有 22 种状态, 00 和 11,前者表示可以通行后者表示不能通行。
同时当Extense处在某个格点时,他只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Extense想要从点 A 走到点 B ,问在不走出迷宫的情况下能不能办到。
如果起点或者终点有一个不能通行(为 1),则看成无法办到。
输入
第 1 行是一个正整数 n (1≤n≤100),表示迷宫的规模是 n×n 的。
接下来是一个 n×n 的矩阵,矩阵中的元素为 0 或者 1。
再接下来一行是 4 个整数 ha la hb lb,描述 A 处在第ha 行 第 la 列,B 处在第hb 行 第 lb 列。
输出
能办到则输出
YES,否则输出NO。样例
输入
3
0 1 1
0 0 1
1 0 0
1 1 3 3输出
YES
链接:Link.
典中典中典的dfs或bfs题,用dfs做的话要注意边界和到没到达终点。
解法一:到了终点用一个f来标记,true就是到了,false就反之
#include <bits/stdc++.h>
using namespace std;
int a[110][110];
int n , s1 , s2 , e1 , e2;
bool f = false;
int fx[5] = {0 , 0 , 1 , 0 , -1};
int fy[5] = {0 , 1 , 0 , -1 , 0};
void dfs(int x , int y){a[x][y] = 1;int tx , ty;for ( int i = 1 ; i <= 4 ; i++ ){tx = x + fx[i];ty = y + fy[i];if(tx >= 1 && tx <= n && ty >= 1 && ty <= n && a[tx][ty] == 0 ){if(tx == e1 && ty == e2) f = true;else dfs(tx , ty);}}
}
int main(){scanf("%d" , &n);for ( int i = 1 ; i <= n ; i++ )for ( int j = 1 ; j <= n ; j++ )scanf("%d" , &a[i][j]);scanf("%d%d%d%d" , &s1 , &s2 , &e1 , &e2);if ( a[s1][s2] == 1 || a[e1][e2] == 1 )printf("NO");else{dfs(s1 , s2);if ( f == true )printf("YES");elseprintf("NO");}return 0;
}
解法二:多加了一个判断条件f==false,这能防止无效递归
#include <bits/stdc++.h>
using namespace std;
int a[110][110];
int n , s1 , s2 , e1 , e2;
bool f = false;
int fx[5] = {0 , 0 , 1 , 0 , -1};
int fy[5] = {0 , 1 , 0 , -1 , 0};
void dfs(int x , int y){a[x][y] = 1;int tx , ty;for ( int i = 1 ; i <= 4 ; i++ ){tx = x + fx[i];ty = y + fy[i];if(tx >= 1 && tx <= n && ty >= 1 && ty <= n && a[tx][ty] == 0 && f == false){if(tx == e1 && ty == e2) f = true;else dfs(tx , ty);}}
}
int main(){scanf("%d" , &n);for ( int i = 1 ; i <= n ; i++ )for ( int j = 1 ; j <= n ; j++ )scanf("%d" , &a[i][j]);scanf("%d%d%d%d" , &s1 , &s2 , &e1 , &e2);if ( a[s1][s2] == 1 || a[e1][e2] == 1 )printf("NO");else{dfs(s1 , s2);if ( f == true )printf("YES\n");elseprintf("NO");}return 0;
}
解法三:到了终点直接输出YES,然后结束整个程序
#include <bits/stdc++.h>
using namespace std;
int a[110][110];
int n , s1 , s2 , e1 , e2;
int fx[5] = {0 , 0 , 1 , 0 , -1};
int fy[5] = {0 , 1 , 0 , -1 , 0};
void dfs(int x , int y){a[x][y] = 1;int tx , ty;for ( int i = 1 ; i <= 4 ; i++ ){tx = x + fx[i];ty = y + fy[i];if(tx >= 1 && tx <= n && ty >= 1 && ty <= n && a[tx][ty] == 0 ){if(tx == e1 && ty == e2) {printf("YES");exit(0); //Í£Ö¹³ÌÐò }else dfs(tx , ty);}}
}
int main(){scanf("%d" , &n);for ( int i = 1 ; i <= n ; i++ )for ( int j = 1 ; j <= n ; j++ )scanf("%d" , &a[i][j]);scanf("%d%d%d%d" , &s1 , &s2 , &e1 , &e2);if ( a[s1][s2] == 1 || a[e1][e2] == 1 )printf("NO");else{dfs(s1 , s2);printf("NO");}return 0;
}
相关文章:
迷宫出口问题求解(DFS)
题面 一天Extense在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由 nn 的格点组成,每个格点只有 22 种状态, 00 和 11,前者表示可以通行后者表示不能通行。 同时当Extense处在某个格点时,他只能移动到东南西北…...
基础算法模板
数据结构 单链表的插入删除 const int N=1e6+10; int head,e[N],ne[N],idx; //head 存储头节点的下标 //idx 存储当前已经用到的那个点 void init() {head=-1;idx=0; } void add_to_head(int x)//插入头节点操作 {e[idx]=x;ne[idx]=head;head=idx;idx++; } void add(int k)/…...
react Ref 的基本使用
类组件中使用ref 在类组件中,你可以使用createRef来创建一个ref,并将它附加到DOM元素或类组件实例上。使用ref允许你在类组件中访问和操作特定的DOM元素或类组件实例。 下面是在类组件中使用ref的步骤: 引入React和createRef: …...
宝塔面板点击SSL闪退打不开怎么解决?
宝塔Linux面板点击SSL证书闪退如何解决?旧版本的宝塔Linux面板确实存在这种情况,如何解决?升级你的宝塔Linux面板即可。新手站长分享宝塔面板SSL闪退的解决方法: 宝塔面板点击SSL证书闪退解决方法 问题:宝塔Linux面板…...
如何将安卓 Gradle 模块打包发布到本地 Maven 仓库
文章目录 具体流程 笔者的运行环境: Android Studio Flamingo | 2022.2.1 Android SDK 33 Gradle 8.0.1 JDK 17 Android 的 Gradle 项目与一般的 Gradle 项目是不同的,因此对将 Gradle 模块打包发布到本地 Maven 仓库来说,对普通 Gradle …...
【Docker】Docker比虚拟机快的原因、ubuntu容器、镜像的分层概念和私有库的详细讲解
🚀欢迎来到本文🚀 🍉个人简介:陈童学哦,目前学习C/C、算法、Python、Java等方向,一个正在慢慢前行的普通人。 🏀系列专栏:陈童学的日记 💡其他专栏:CSTL&…...
java.lang.IllegalArgumentException: Invalid character found in methodname
postman请求异常:java.lang.IllegalArgumentException: Invalid character found in method name. HTTP method names must be tokens...
【PCB专题】Allegro高速电路Xnet网络等长约束——SDIO信号为例
高速PCB板布线过程中,经常遇到等长设置问题,例如DDR的一组数据线和地址线等。但是由于数据线和地址线中间有一个电阻(或排阻),这种情况下设置等长就要引入Xnet的概念,通过设置Xnet的等长来确保数据线和地址线的等长。 由无源、分立器件(电阻、电容、电感)连接起来的几段…...
leetcode每日一练-第278题-第一个错误的版本
一、思路 二分查找——因为它可以快速地将版本范围缩小一半,从而更快地找到第一个坏版本。 二、解题方法 维护一个左边界 left 和一个右边界 right,在每一步循环中,我们计算中间版本 mid,然后检查它是否是坏版本。如果是坏版本…...
最小生成树笔记(Prim算法Kruskal算法)
1.最小生成树 最小生成树(Minimum Spanning Tree,简称MST)是指:在一个连通无向图中,找到一个包含所有顶点的树,且该树的所有边的权重之和最小。 换句话说,最小生成树是原图中的一个子图&#…...
4、数据清洗
4、数据清洗 前面我们处理的数据实际上都是已经被处理好的规整数据,但是在大数据整个生产过程中,需要先对数据进行数据清洗,将杂乱无章的数据整理为符合后面处理要求的规整数据。 数据去重 1.删除重复数据groupby().count():可以…...
Python-OpenCV 图像的基础操作
图像的基础操作 获取图像的像素值并修改获取图像的属性信息图像的ROI区域图像通道的拆分及合并图像扩边填充图像上的算术运算图像的加法图像的混合图像的位运算 获取图像的像素值并修改 首先读入一副图像: import numpy as np import cv2# 1.获取并修改像素值 # 读…...
test111
step3:多线程task 首先,实现两个UserService和AsyncUserService两个服务接口: package com.example.demospringboot.service;public interface UserService {void checkUserStatus(); }package com.example.demospringboot.service.impl;im…...
17. Spring 事务
目录 1. 事务定义 2. MySQL 中的事务使用 3. 没有事务时的插入 4. Spring 编程式事务 5. Spring 声明式事务 5.1 Transactional 作用范围 5.2 Transactional 参数说明 5.3 Transactional 工作原理 1. 事务定义 将⼀组操作封装成一个执行单元(封装到一起…...
【C# 基础精讲】运算符和表达式
在C#编程中,运算符和表达式是构建复杂逻辑的关键元素。运算符用于执行各种数学、逻辑和其他操作,而表达式则由运算符、变量、常量和函数组成,用于生成计算结果。本文将详细介绍C#中常见的运算符和表达式的概念,以及它们在程序中的…...
【搜索】DFS连通性模型
算法提高课笔记 目录 迷宫题意思路代码 红与黑题意思路代码 DFS 的搜索分为两大部分: 内部搜索:一个图中从一个点搜到另一个点外部搜索:从一张图(状态)搜到另一张图(状态) 在第一个部分里是图…...
项目优化后续 ,手撸一个精简版VUE项目框架!
之前说过项目之前用的vben框架,在优化完性能后打包效果由原来的纯代码96M变成了56M,后续来啦,通过更换框架,代码压缩到了36M撒花~ 现在就来详细说说是怎么手撸一个框架的! 方案: 搭建一套 vite vue3 a…...
【深度学习笔记】TensorFlow 基础
在 TensorFlow 2.0 及之后的版本中,默认采用 Eager Execution 的方式,不再使用 1.0 版本的 Session 创建会话。Eager Execution 使用更自然地方式组织代码,无需构建计算图,可以立即进行数学计算,简化了代码调试的过程。…...
面试题-springcloud中的负载均衡是如何实现的?
一句话导读 Springcloud中的负载均衡是通过Ribbon实现的,自带有很多负载均衡策略,如:包括轮询(Round Robin)、随机(Random)、加权轮询(Weighted Round Robin)、加权随机&…...
flink的ProcessWindowFunction函数的三种状态
背景 在处理窗口函数时,ProcessWindowFunction处理函数可以定义三个状态: 富函数getRuntimeContext.getState, 每个key每个窗口的状态context.windowState(),每个key的状态context.globalState,那么这几个状态之间有什么关系呢? …...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
