springboot 使用zookeeper实现分布式队列
一.添加ZooKeeper依赖:在pom.xml文件中添加ZooKeeper客户端的依赖项。例如,可以使用Apache Curator作为ZooKeeper客户端库:
<dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</artifactId><version>5.2.0</version>
</dependency>
二.创建ZooKeeper连接:在应用程序的配置文件中,配置ZooKeeper服务器的连接信息。例如,在application.properties文件中添加以下配置:
zookeeper.connectionString=localhost:2181
三.创建分布式队列:使用ZooKeeper客户端库创建一个分布式队列。可以使用Apache Curator提供的DistributedQueue类来实现。在Spring Boot中,可以通过创建一个@Configuration类来初始化分布式队列:
@Configuration
public class DistributedQueueConfig {@Value("${zookeeper.connectionString}")private String connectionString;@Beanpublic DistributedQueue<String> distributedQueue() throws Exception {RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);CuratorFramework curatorFramework = CuratorFrameworkFactory.newClient(connectionString, retryPolicy);curatorFramework.start();DistributedQueue<String> distributedQueue = QueueBuilder.builder(curatorFramework, new QueueConsumer<String>() {@Overridepublic void consumeMessage(String message) throws Exception {// 处理队列中的消息}@Overridepublic void stateChanged(CuratorFramework client, ConnectionState newState) {// 处理连接状态变化}}, new QueueSerializer<String>() {@Overridepublic byte[] serialize(String item) {return item.getBytes();}@Overridepublic String deserialize(byte[] bytes) {return new String(bytes);}}, "/queue").buildQueue();distributedQueue.start();return distributedQueue;}
}
在上面的示例中,我们使用了Curator提供的QueueBuilder来创建一个分布式队列。我们定义了一个QueueConsumer来处理队列中的消息,并实现了一个QueueSerializer来序列化和反序列化队列中的元素。
四.使用分布式队列:在需要使用分布式队列的地方,注入DistributedQueue实例,并使用其提供的方法来操作队列。例如,可以使用add()方法将消息添加到队列中:
@Autowired
private DistributedQueue<String> distributedQueue;public void addToQueue(String message) throws Exception {distributedQueue.put(message);
}
以上是使用ZooKeeper实现分布式队列的基本步骤。通过ZooKeeper的协调和同步机制,多个应用程序可以共享一个队列,并按照先进先出的顺序处理队列中的消息。请注意,上述示例中的代码仅供参考,实际使用时可能需要根据具体需求进行适当的修改和调整。
相关文章:
springboot 使用zookeeper实现分布式队列
一.添加ZooKeeper依赖:在pom.xml文件中添加ZooKeeper客户端的依赖项。例如,可以使用Apache Curator作为ZooKeeper客户端库: <dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</…...
地理数据的双重呈现:GIS与数据可视化
前一篇文章带大家了解了GIS与三维GIS的关系,本文就GIS话题带大家一起探讨一下GIS和数据可视化之间的关系。 GIS(地理信息系统)和数据可视化在地理信息科学领域扮演着重要的角色,它们之间密切相关且相互增强。GIS是一种用于采集、…...
Android 13 Media框架(3)- MediaPlayer生命周期
上一节了解了MediaPlayer api的使用,这一节就我们将会了解MediaPlayer的生命周期与api使用细节。 1、MediaPlayer生命周期 MediaPlayer.java 一开始有对生命周期的描述,这里对这些内容进行翻译: MediaPlayer 是线程不安全的,创建…...
[oneAPI] BERT
[oneAPI] BERT BERT训练过程Masked Language Model(MLM)Next Sentence Prediction(NSP)微调 总结基于oneAPI代码 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI&…...
F1-score解析
报错:valueError: Target is multiclass but average‘binary’. Please choose another average setting, one of 原因:使用from sklearn.metrics import f1_score多类别计算F1-score时报错,改函数的参数即可,如:f1_s…...
windows11下配置vscode中c/c++环境
本文默认已经下载且安装好vscode,主要是解决环境变量配置以及编译task、launch文件的问题。 自己尝试过许多博客,最后还是通过这种方法配置成功了。 Linux(ubuntu 20.04)配置vscode可以直接跳转到配置task、launch文件,不需要下载mingw与配…...
Max Sum
一、题目 Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 (-1) 5 4 14. Input The first line of the input contains an integer T(1<T<…...
Field injection is not recommended
文章目录 1. 引言2. 不推荐使用Autowired的原因3. Spring提供了三种主要的依赖注入方式3.1. 构造函数注入(Constructor Injection)3.2. Setter方法注入(Setter Injection)3.3. 字段注入(Field Injection) 4…...
C#字符串占位符替换
using System;namespace myprog {class test{static void Main(string[] args){string str1 string.Format("{0}今年{1}岁,身高{2}cm,月收入{3}元;", "小李", 23, 177, 5000);Console.WriteLine(str1);Console.ReadKey(…...
ChatGPT等人工智能编写文章的内容今后将成为常态
BuzzFeed股价上涨200%可能标志着“转向人工智能”媒体趋势的开始。 周四,一份内部备忘录被华尔街日报透露BuzzFeed正计划使用ChatGPT聊天机器人-风格文本合成技术来自OpenAI,用于创建个性化盘问和将来可能的其他内容。消息传出后,BuzzFeed的…...
【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)
【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 梯度提升树(Gradient Boosting Trees)是一种集成学习方法,用于解决分类和回归问题。它通过将多个弱学习器(通常…...
什么叫做云计算?
相信大多数人对云计算或者是云服务的认识还停留在仅仅听过这个名词,但是对其真正的定义或者意义还不甚了解的层面。甚至有些技术人员,如果日常的业务不涉及到云服务,可能对其也只是一知半解的程度。首先云计算准确的讲只是云服务中的一部分&a…...
深度学习Batch Normalization
批标准化(Batch Normalization,简称BN)是一种用于深度神经网络的技术,它的主要目的是解决深度学习模型训练过程中的内部协变量偏移问题。简单来说,当我们在训练深度神经网络时,每一层的输入分布都可能会随着…...
el-table实现懒加载(el-table-infinite-scroll)
2023.8.15今天我学习了用el-table对大量的数据进行懒加载。 效果如下: 1.首先安装: npm install --save el-table-infinite-scroll2 2.全局引入: import ElTableInfiniteScroll from "el-table-infinite-scroll";// 懒加载 V…...
vueRouter回顾
关于vueRouter的两种路由模式 “history” 模式使用正常的 URL 格式,例如 https://example.com/path。“hash” 模式将路由信息添加到 URL 的哈希部分(#)后面,例如 https://example.com/#/path。 1、history模式:没有…...
大规模无人机集群算法flocking(蜂群)
matlab2016b正常运行...
【第三阶段】kotlin语言的split
const val INFO"kotlin,java,c,c#" fun main() {//list自动类型推断成listList<String>val listINFO.split(",")//直接输出list集合,不解构println("直接输出list的集合元素:$list")//类比c有解构,ktoli…...
机器学习笔记值优化算法(十四)梯度下降法在凸函数上的收敛性
机器学习笔记之优化算法——梯度下降法在凸函数上的收敛性 引言回顾:收敛速度:次线性收敛二次上界引理 梯度下降法在凸函数上的收敛性收敛性定理介绍证明过程 引言 本节将介绍梯度下降法在凸函数上的收敛性。 回顾: 收敛速度:次…...
iphone拷贝照片中间带E自动去重软件,以及java程序如何打包成jar和exe
文章目录 一、前提二、问题描述三、原始处理方式四、程序处理4.1 java程序如何打包exe4.1.1 首先打包jar4.1.2 开始生成exe4.1.3 软件使用方式 4.2 更换图标4.2.1 更换swing的打包jar图标4.2.2 更换exe图标 4.3 如何使生成的exe在没有java环境的电脑上运行4.3.1 Inno Setup打包…...
不同分类器对数据的处理
"""基于鸢尾花的不同分类器的效果比对:step1:准备数据;提取数据的特征向量X,Y将Y数据采用LabelEncoder转化为数值型数据;step2:将提取的特征向量X,Y进行拆分(训练集与测试集)step3:构建不同分类器并设置参数,例如:…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...
