当前位置: 首页 > news >正文

【学习笔记】POJ 3834 graph game

点这里

结论题😅 ,图一乐

结论:如果原图中存在两个边集不交的生成树,那么 Bob \text{Bob} Bob必胜;否则 Alice \text{Alice} Alice必胜

证明有点难😅

首先,考虑维护两颗 不存在红边 的生成树,如果 Alice \text{Alice} Alice断掉了其中一颗树上的一条边,将这个树分成两个连通块,那么 Bob \text{Bob} Bob一定可以在另一颗树上选择一条边变成蓝色,使得这个树再次联通,最终两个生成树都只由蓝边构成

其次,如果原图中不存在这样的两颗生成树,则考虑某次 Alice \text{Alice} Alice操作时, Bob \text{Bob} Bob胜利的条件:将所有蓝色的边 复制一遍,使得存在两个边集不交的生成树。假设存在某种策略,使得 Bob \text{Bob} Bob在某次操作后满足了这个条件,那么 Alice \text{Alice} Alice可以照搬 Bob \text{Bob} Bob的策略,使得某次操作后将红边复制一遍,使得存在两个边集不交的生成树。因此 Alice \text{Alice} Alice存在可以让红边构成一颗生成树的策略。又因为原图中不存在两个边集不交的生成树,因此 Bob \text{Bob} Bob无法胜利

有点绞

发现 ( 30 9 ) \binom{30}{9} (930)比较小,直接暴搜即可。

#include<cstdio>
#include<iostream>
#define ll long long
#define pb push_back
#define fi first
#define se second
#define db double
#define ull unsigned long long
#define inf 0x3f3f3f3f
using namespace std;
int n,m,fa[10],fa2[10],U[30],V[30],s[30];
int find(int x){return fa[x]==x?x:find(fa[x]);
}
int check(){for(int i=0;i<n;i++)fa2[i]=fa[i],fa[i]=i;int tot=0;for(int i=0;i<m;i++){if(s[i]==0){int x=find(U[i]),y=find(V[i]);if(x!=y)fa[x]=y,tot++;}}if(tot==n-1){return 1;}for(int i=0;i<n;i++)fa[i]=fa2[i];return 0;
}
int dfs(int x,int y){if(y==n-1)return check();for(int i=x;i<m;i++){int a=find(U[i]),b=find(V[i]);if(a==b)continue;fa[a]=b,s[i]=1;if(dfs(i+1,y+1))return 1;fa[a]=a,s[i]=0;}return 0;
}
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);while(cin>>n>>m){if(n==-1&&m==-1)break;for(int i=0;i<n;i++)fa[i]=i;for(int i=0;i<m;i++)cin>>U[i]>>V[i],s[i]=0;cout<<(dfs(0,0)?"YES":"NO")<<"\n";}
}

相关文章:

【学习笔记】POJ 3834 graph game

点这里 结论题&#x1f605; &#xff0c;图一乐 结论&#xff1a;如果原图中存在两个边集不交的生成树&#xff0c;那么 Bob \text{Bob} Bob必胜&#xff1b;否则 Alice \text{Alice} Alice必胜 证明有点难&#x1f605; 首先&#xff0c;考虑维护两颗 不存在红边 的生成树…...

无监督学习算法Kmeans

1. 有监督学习和无监督学习 在机器学习算法中&#xff0c;常把算法分为有监督学习和无监督学习两种。他们之间的区别主要在于输入数据集类型和学习目标。 &#xff08;1&#xff09;有监督学习&#xff1a;训练输入的数据需要带有标签&#xff0c;以便算法能够学习输入和输出…...

区块链(4):区块链技术模型介绍

1 区块链白皮书中的公有链&#xff0c;私有链&#xff0c;联盟链概念介绍 区块链系统根据应用场景和设计体系的不同&#xff0c;一般分为公有链、联盟 链和专有链(私有链)。其中: 公有链的各个节点可以自由加入和退出网络&#xff0c;并参加链上数据的读 写&#xff0c;运行时…...

go语言 rune 类型

ASCII 码只需要 7 bit 就能完整地表示&#xff0c;但只能表示英文字母在内的 128 个字符&#xff0c;为了表示世界上大部分的文字系统&#xff0c;发明了 Unicode &#xff0c;它是 ASCII 的超集&#xff0c;包含世界上书写系统中存在的所有字符&#xff0c;并且为每个代码分配…...

DS18B20温度传感器

DS18B20简介 DS18B20 是由 DALLAS 半导体公司推出的一种的“一线总线&#xff08;单总线&#xff09;”接口的温度传感器 这种一线总线就是 三线制 SPI DS18B20的 配置寄存器&#xff1a; TM 是测试位&#xff0c;出厂设置就被设置为0&#xff0c;不需要改动&#xff0c; R1、R…...

LeetCode322. 零钱兑换

322. 零钱兑换 文章目录 [322. 零钱兑换](https://leetcode.cn/problems/coin-change/)一、题目二、题解方法一&#xff1a;完全背包二维数组方法二&#xff1a;一维数组 三、注意 一、题目 给你一个整数数组 coins &#xff0c;表示不同面额的硬币&#xff1b;以及一个整数 a…...

AUTOSAR扫盲贴--不是黑神话【基本概念和方法论】

猴子纵有72搬变化,也跳不出如来的手掌 目录 1. 引言 2. AUTOSAR的基本概念 2.1. AUTOSAR的架构和组成部分 2.2. AUTOSAR的规范和...

python抠图(去水印)开源库lama-cleaner入门应用实践

1. 关于 Lama Cleaner Lama Cleaner 是由 SOTA AI 模型提供支持的免费开源图像修复工具。可以从图片中移除任何不需要的物体、缺陷和人&#xff0c;或者擦除并替换&#xff08;powered by stable diffusion&#xff09;图片上的任何东西。 特征&#xff1a; 完全免费开源&am…...

Nginx可视化管理工具结合cpolar实现远程访问内网服务

前言 Nginx Proxy Manager 是一个开源的反向代理工具&#xff0c;不需要了解太多 Nginx 或 Letsencrypt 的相关知识&#xff0c;即可快速将你的服务暴露到外部环境&#xff0c;并且支持 SSL 配置。基于 Tabler 的美观且安全的管理界面,无需了解 Nginx 即可轻松创建转发域、重定…...

CCC数字钥匙设计【BLE】 --建立安全测距

1、建立安全测距Establish Secure Ranging 车端总共有三种建立安全测距的方式&#xff0c;具体如下&#xff1a; 1) Optimal Flow 2) Sub-Optimal Flow 3) Ranging Recovery Flow 为了确定建立安全测距需要执行哪条流程&#xff0c;车辆需要进行以下流程选择。当车辆和设备…...

Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。

1、安装opencv依赖 安装时最好更换一下源。 sudo apt-get -y update sudo apt-get -y install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev sudo apt-get -y install libgtk-3-dev gfortran openexr libatlas-base-dev python3-dev pyt…...

常识判断 --- 党史

目录 中共1~3大 例题 国民党 例题 中共4~5大 例题 中共起义~会议 例题 中共六届六中全会&#xff08;1938年9月&#xff09; 中共七大&#xff08;1945年4月&#xff09; 例题 中共七届二中全会 例题 中共8~10大 中共11~12届全会 例题 中共13~14大 …...

Rust 基础再理解

Rust堆栈 Rust中各种类型的值默认都存储在栈中&#xff0c;除非显式地使用Box::new()将它们存放在堆上&#xff0c;但数据要存放在栈中&#xff0c;要求其数据类型的大小已知。对于静态大小的类型&#xff0c;可直接存储在栈上&#xff0c;如裸指针、布尔、字符、整数浮点数&a…...

Opencv cuda版本在ubuntu22.04中安装办法,解决Could NOT find CUDNN的办法

文章目录 概要下载cuda的runfile版本配置环境变量官网下载cudann安装Opencv依赖包下载opencv和opencv_contrib并解压准备编译安装anaconda环境执行编译命令安装OpenCV并检查是否安装成功 概要 解决以下安装问题&#xff1a; -- Could NOT find CUDNN: Found unsuitable versi…...

全网首发YOLOv8暴力涨点:Gold-YOLO,遥遥领先,超越所有YOLO | 华为诺亚NeurIPS23

💡💡💡本文独家改进:提出了全新的信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,Gold-YOLO,替换yolov8 head部分 实现暴力涨点 Gold-YOLO | 亲测在多个数据集能够实现大幅涨点 💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、…...

BD就业复习第四天

1. 布隆过滤器怎么实现去重 布隆过滤器是一种用于快速检查一个元素是否可能存在于一个大集合中的数据结构&#xff0c;但它并不适用于精确去重。因为布隆过滤器具有一定的误判率&#xff08;可能会将不存在的元素误判为存在&#xff09;&#xff0c;所以不能确保完全的去重。但…...

数据结构 | 树

树 树是n&#xff08;n>0&#xff09;个结点的有限集。当n 0时&#xff0c;称为空树。在任意一棵非空树中应满足&#xff1a; 有且仅有一个特定的称为根的结点。当n>1时&#xff0c;其余节点可分为m&#xff08;m>0&#xff09;个互不相交的有限集T1,T2,…,Tm&#…...

Android11 适配

一、修改targetSdkVersion为30 将build.gradle的目标版本targetSdkVersion修改为30&#xff08;Android 11&#xff09; targetSdkVersion 30Android11的改变改变主要影响以Adnroid11 为目标版本的应用&#xff08;targetSdkVersion>30才有影响&#xff09;&#xff0c;和所…...

UML基础与应用之对象图

什么是对象图&#xff1f; 对象图表示一组对象及它们之间的关系&#xff0c;是某一时刻系统详细信息的快照&#xff0c;描述系统交互的静态图形&#xff0c;它由协作的对象组成&#xff0c;但不包含在对象之间传递的任何消息。因为对象是类的实例化&#xff0c;所以说某一时刻…...

英码科技精彩亮相火爆的IOTE 2023,多面赋能AIoT产业发展!

9月20日至22日&#xff0c;在这金秋飒爽的季节&#xff0c;为期三天的IOTE 2023第二十届国际物联网展深圳站在深圳国际会展中心盛大举行。英码科技精彩亮相本届展会&#xff0c;并在同期举办的AIoT视觉物联产业生态大会发表了主题演讲&#xff0c;与生态伙伴们共同探讨AIoT产业…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...