Java开发中List数据量大,需要分片批次处理
在开发过程中可能会遇到需要处理的List数据量过大,可以选择分批处理的方式对大量数据进行处理。
1、使用 apache 的工具包
<dependency><groupId>org.apache.commons</groupId><artifactId>commons-collections4</artifactId><version>4.4</version>
</dependency>
代码示例:Lists.partition()
List<Integer> list=new ArrayList<>();for (int i=0;i<500;i++){list.add(i);}List<List<Integer>> newList = Lists.partition(list, 150);for (List<Integer> subset:newList){System.out.println(subset.size());}
2、使用 guava 的工具包
<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>31.0.1-jre</version>
</dependency>
代码示例:Lists.partition()
List<Integer> list=new ArrayList<>();for (int i=0;i<500;i++){list.add(i);}List<List<Integer>> newList = Lists.partition(list, 150);for (List<Integer> subset:newList){System.out.println(subset.size());}
当然还有其他工具包也封装了List分批处理的函数。
参考链接:
https://blog.csdn.net/qq_35387940/article/details/121612391
相关文章:
Java开发中List数据量大,需要分片批次处理
在开发过程中可能会遇到需要处理的List数据量过大,可以选择分批处理的方式对大量数据进行处理。 1、使用 apache 的工具包 <dependency><groupId>org.apache.commons</groupId><artifactId>commons-collections4</artifactId><v…...
Apache Doris 2.0.2 版本正式发布!
峰会官网已上线,最新议程请关注:doris-summit.org.cn 点击报名 亲爱的社区小伙伴们,Apache Doris 2.0.2 版本已于 2023 年 10 月 6 日正式发布,该版本对多个功能进行了更新优化,旨在更好地满足用户的需求。有 92 位贡献…...
transformers架构实现
目录 架构代码如下 模型打印如下 架构代码如下 import numpy as np from torch.autograd import Variable import copy from torch import softmax import math import torch import torch.nn.functional as F import torch.nn as nn # 构建Embedding类来实现文本嵌入层 class…...
C++类型推导
这里对C的类型推导方式进行一次全面的总结。 C中有三种类型推导的方式,分别是模板、auto以及decltype()。以下分别介绍这三种方式的同异。 一 模板 假设有这样的函数模板和这样的调用: template<typename T> void f(ParamType param);f(expr);…...
Open3D(C++) SVD分解求两个点云的变换矩阵
目录 一、算法原理二、代码实现三、结果展示四、相关链接一、算法原理 计算两个点云的质心计算中心化向量计算协方差矩阵奇异值分解,求解旋转矩阵 R R R计算平移向量 t t...
rtmp htttp推流Windows桌面到srs进行播放
推流命令: ffmpeg -f gdigrab -framerate 30 -i desktop -c:v libx264 -preset ultrafast -tune zerolatency -pix_fmt yuv420p -f flv rtmp://xxx.xxx.xxxx.xx/live/livestream 后面是推流地址 推流后的播放地址为: http://xxxxxx:8080/live/livestream.flv 可以写一个…...
NSSCTF做题(9)
[GDOUCTF 2023]<ez_ze> 看见输入框而且有提示说是ssti注入 输入{{7*7}} 试试,发现报错 输入{%%}发现了是jinja2模板 找到关键函数 Python SSTI利用jinja过滤器进行Bypass ph0ebuss Blog 原理见这篇文章,这里直接给出payload {%set ninedict(aaa…...
【09】基础知识:React组件的生命周期
组件从创建到死亡它会经历一些特定的阶段。 React 组件中包含一系列勾子函数(生命周期回调函数 <> 生命周期钩子函数 <> 生命周期函数 <> 生命周期钩子),会在特定的时刻调用。 我们在定义组件时,会在特定的生…...
Pytorch之ConvNeXt图像分类
文章目录 前言一、ConvNeXt设计决策1.设计方案2.Training Techniques3.Macro Design🥇Changing stage compute ratio🥈Change stem to "Patchify" 4.ResNeXt-ify5. Inverted Bottleneck6.Large Kernel Size7.Micro Design✨Replacing ReLU wit…...
Linux系统编程:makefile以及文件系统编程
增量编译概念 首先回顾一下我们之前写的各种gcc指令用来执行程序: 可以看见非常繁琐,两个文件就要写这么多,那要是成百上千岂不完蛋。 所以为了简化工作量,很自然的想到了将这些命令放在一起使用脚本文件来一键执行,…...
《动手学深度学习 Pytorch版》 8.5 循环神经网络的从零开始实现
%matplotlib inline import math import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, num_steps 32, 35 train_iter, vocab d2l.load_data_time_machine(batch_size, num_steps) # 仍然使用时间机器数据集8.…...
写一个宏,可以将一个整数的二进制位的奇数位和偶数位交换
我们这里是利用按位与来计算的 我们可以想想怎么保留偶数上的位?我们可以利用0x55555555按位与上这个数就保留了偶数 我们知道,16进制0x55555555转换为二进制就是0x01010101010101010101010101010101 我们知道,二进制每一位,如…...
Zabbix监控系统详解2:基于Proxy分布式实现Web应用监控及Zabbix 高可用集群的搭建
文章目录 1. zabbix-proxy的分布式监控的概述1.1 分布式监控的主要作用1.2 监控数据流向1.3 构成组件1.3.1 zabbix-server1.3.2 Database1.3.3 zabbix-proxy1.3.4 zabbix-agent1.3.5 web 界面 2. 部署zabbix代理服务器2.1 前置准备2.2 配置 zabbix 的下载源,安装 za…...
docker 安装oracle
拉取镜像 拉取oracle_11g镜像 拉取oracle镜像(oracle 11.0.2 64bit 企业版 实例名: helowin) Oracle主要在Docker基础上安装,安装环境注意空间和内存,Oracle是一个非常庞大的一个软件, 建议使用网易镜像或阿里镜像网站这里以oracle 11.0.2…...
C++ vector 自定义排序规则(vector<vector<int>>、vector<pair<int,int>>)
vector< int > vector<int> vec{1,2,3,4};//默认从小到大排序 1234 sort(vec.begin(),vec.end()); //从大到小排序 4321 sort(vec.begin(),vec.end(),greater<int>());二维向量vector<vector< int >> vector<vector<int>> vec{{0…...
机器学习 Q-Learning
对马尔可夫奖励的理解 看的这个教程 公式:V(s) R(s) γ * V(s’) V(s) 代表当前状态 s 的价值。 R(s) 代表从状态 s 到下一个状态 s’ 执行某个动作后所获得的即时奖励。 γ 是折扣因子,它表示未来奖励的重要性,通常取值在 0 到 1 之间。…...
产品设计心得体会 优漫动游
产品设计需要综合考虑用户需求、市场需求和技术可行性,从而设计出能够满足用户需求并具有市场竞争力的产品。以下是我在产品设计方面的心得体会: 产品设计心得体会 1.深入了解用户需求:在产品设计之前,需要进行充分的用户调研…...
前端--CSS
文章目录 CSS的介绍 引入方式 代码风格 选择器 复合选择器 (选学) 常用元素属性 背景属性 圆角矩形 Chrome 调试工具 -- 查看 CSS 属性 元素的显示模式 盒模型 弹性布局 一、CSS的介绍 层叠样式表 (Cascading Style Sheets). CSS 能够对网页中元素位置的排版进行像素级精…...
实操指南|如何用 OpenTiny Vue 组件库从 Vue 2 升级到 Vue 3
前言 根据 Vue 官网文档的说明,Vue2 的终止支持时间是 2023 年 12 月 31 日,这意味着从明年开始: Vue2 将不再更新和升级新版本,不再增加新特性,不再修复缺陷 虽然 Vue3 正式版本已经发布快3年了,但据我了…...
系统架构设计:15 论软件架构的生命周期
目录 一 软件架构的生命周期 1 需求分析阶段 2 设计阶段 3 实现阶段 4 构件组装阶段...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
