当前位置: 首页 > news >正文

初谈C++:引用

在这里插入图片描述

文章目录

  • 前言
  • 概述
  • 引用特性
  • 应用场景
    • 做参数
    • 做返回值
  • 传值、传引用效率比较
  • 引用和指针的区别

前言

在学习C语言的时候会遇到指针,会有一级指针、二级指针…很容易让人头昏脑胀。在C++里面,引入了引用的概念,会减少对指针的使用。引用相当于给一个变量起了一个别名,比如“高总”指的是小编。

概述

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。

类型& 引用变量名(对象名) = 引用实体

#include<iostream>using namespace std;int main()
{int a = 10;int& b = a;int& c = a;return 0;
}

调试过程中,发现引用变量的地址和引用实体的地址是相同的,也就是说引用实际上就是给一个变量起了一个别名。

在这里插入图片描述
注意引用类型必须和引用实体是同种类型的

引用和C语言中只针的操作其实差不多,我们在反汇编语言中可以看到:

在这里插入图片描述

引用特性

1. 引用在定义时必须初始化

int main()
{int a = 10;int& ra;   //错误语法return 0;
}

在这段代码中,int& ra没有初始化,编译器会报错

在这里插入图片描述
正确代码:

int main()
{int a = 10;int& ra = a;return 0;
}
  1. 一个变量可以有多个引用
int main()
{int a = 10;int& ra = a;int& rra = a;return 0;
}

上述代码中,rarra都是对变量a的引用。这是没有问题的,比如小编有不止一个外号。

  1. 引用一旦引用一个实体,再不能引用其他实体
int main()
{int a = 10;int temp = 20;int& ra = a;ra = temp;cout << ra << endl;cout << a << endl;return 0;
}

运行结果:

在这里插入图片描述

在这段代码中ra是变量a的引用,ra=temp是将temp的值赋给ra引用的实体,即a

应用场景

做参数

效果:

  1. 做输出型参数,形参的改变可以影响实参
  2. 减少拷贝,提高效率
void Swap(int& a,int& b)
{int tmp = a;a = b;b = tmp;
}int main()
{int x = 0, y = 1;Swap(x, y);cout << x << " " << y << endl;return 0;
}

运行结果:

在这里插入图片描述

上述代码确实实现了交换两个数字的功能

形参a是对实参x的引用,和x表示同一块空间;形参b是对实参y的引用,和y表示的是用一块空间。所以,在函数内交换ab实际上就是在交换xy

做返回值

以前的传值返回:

int Add(int a, int b)
{int sum = a + b;return sum;
}int main()
{int x = 4;int y = 3;int ans = Add(x, y);cout << ans << endl;return 0;
}

这里随着函数栈帧调用的结束,sum也会销毁。那为什么最后还能打印出最终结果?

对于这种传值返回,会有一个临时变量的生成,这种临时变量是用来存储返回值的,当返回值比较小的时候,这个临时变量就是寄存器。通过反汇编,我们可以看到:把sum值赋给了寄存器eax

在这里插入图片描述
以上是在局部变量中

那么以satic修饰的变量在静态区,此变量虽然不会随着调用函数的栈帧销毁而销毁,但是在传值返回的时候也会创建临时变量。

在这里插入图片描述
因此不难看出,传值返回都会生成一个中间变量。


以上是以前的写法,那么在学了引用后,我们需要使用引用返回:

引用返回和传值返回不同,函数栈帧销毁后,不需要创建临时变量来存储返回值。但是函数栈帧销毁后,返回的变量仍然存在。

也就是说,返回的变量不能存储在调用的函数的栈帧中,所以返回的变量是存储在静态区的变量或者是在堆上申请的变量。

先来看下面的代码:

int& Add(int a, int b)
{int c = a + b;return c;
}
int main()
{int& ret = Add(1, 2);Add(3, 4);cout << "Add(1, 2) is :" << ret << endl;return 0;
}

运行结果:

在这里插入图片描述
并不是我们需要的结果,这是为什么呢?

主函数中,首先调用的是函数Add(1,2),此函数函数调用结束后,该函数对应的栈空间就被回收了,也就是说Add函数中c变量就没有意义了。中ret引用Add函数返回值实际应用的就是一块已经被释放的空间。
然后调用Add(3,4)函数,此函数函数调用结束后,该函数对应的栈空间就被回收了,也就是说Add函数中c变量就没有意义了。注意:空间被收回是说空间不能使用了,但是空间本身还在,而ret引用的c的位置被修改成了7,因此ret的值就被修改了。


关于引用返回需要强调的是:

  1. 函数运行时,系统需要给该函数开辟独立的栈空间,用来保存该函数的形参、局部变量以及一些寄存信息等
  2. 函数运行结束后,该函数的栈空间就会被系统收回
  3. 空间被收回指的是这块栈空间暂时不能被使用,但是内存还在

注意:
如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。

传值、传引用效率比较

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

#include <time.h>
struct A { int a[10000]; };
void TestFunc1(A a) {}
void TestFunc2(A& a) {}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}int main()
{TestRefAndValue();return 0;
}

运行结果:

在这里插入图片描述
性能比较:

#include <time.h>
struct A { int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a; }
// 引用返回
A& TestFunc2() { return a; }
void TestReturnByRefOrValue()
{// 以值作为函数的返回值类型size_t begin1 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc1();size_t end1 = clock();// 以引用作为函数的返回值类型size_t begin2 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc2();size_t end2 = clock();// 计算两个函数运算完成之后的时间cout << "TestFunc1 time:" << end1 - begin1 << endl;cout << "TestFunc2 time:" << end2 - begin2 << endl;
}int main()
{TestReturnByRefOrValue();return 0;
}

运行结果:

在这里插入图片描述

通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大

引用和指针的区别

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间

底层实现上实际是有空间的,因为引用是按照指针方式来实现的

引用和指针的不同点:

  1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
  2. 引用在定义时必须初始化,指针没有要求
  3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
  4. 没有NULL引用,但有NULL指针
  5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)
  6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
  7. 有多级指针,但是没有多级引用
  8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
  9. 引用比指针使用起来相对更安全

在这里插入图片描述

相关文章:

初谈C++:引用

文章目录 前言概述引用特性应用场景做参数做返回值 传值、传引用效率比较引用和指针的区别 前言 在学习C语言的时候会遇到指针&#xff0c;会有一级指针、二级指针…很容易让人头昏脑胀。在C里面&#xff0c;引入了引用的概念&#xff0c;会减少对指针的使用。引用相当于给一个…...

C++ 数论相关题目 博弈论:拆分-Nim游戏

给定 n 堆石子&#xff0c;两位玩家轮流操作&#xff0c;每次操作可以取走其中的一堆石子&#xff0c;然后放入两堆规模更小的石子&#xff08;新堆规模可以为 0 &#xff0c;且两个新堆的石子总数可以大于取走的那堆石子数&#xff09;&#xff0c;最后无法进行操作的人视为失…...

EDR、SIEM、SOAR 和 XDR 的区别

在一个名为网络安全谷的神秘小镇&#xff0c;居住着四位守护者&#xff0c;他们分别是EDR&#xff08;艾迪&#xff09;、SIEM&#xff08;西姆&#xff09;、SOAR&#xff08;索亚&#xff09;和XDR&#xff08;艾克斯&#xff09;。他们各自拥有独特的能力&#xff0c;共同守…...

修复idea,eclipse ,clion控制台中文乱码

控制台乱码问题主要原因并不在编译器IDE身上&#xff0c;还主要是Windows的控制台默认编码问题。。。 Powershell&#xff0c;cmd等默认编码可能不是UTF-8&#xff0c;无需改动IDE的settings或者properties&#xff08;这治标不治本&#xff09;&#xff0c;直接让Windows系统…...

怎样使用Oxygen XML Editor将MS Word转换成DITA

▲ 搜索“大龙谈智能内容”关注公众号▲ 前阵子分享过一篇文章&#xff1a;《如何将Word/PDF转成高质量XML》。 文章中分享了将Word/PDF转换成高质量XML的思路和大体步骤。有朋友问&#xff1a;有什么工具可以做这个数据转换&#xff0c;具体怎么操作呢&#xff1f; 今天就来…...

【云上建站】快速在云上构建个人网站3——网站选型和搭建

快速在云上构建个人网站3——网站选型和搭建 一、网站选型二、云市场镜像方式一&#xff1a;方式二&#xff1a;1. 进入ECS实例详情页面&#xff0c;点击停止&#xff0c;确保更换操作系统的之前ECS实例处于已停止状态&#xff0c;点击更换操作系统&#xff0c;进行镜像配置。2…...

给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数

这个算法的核心思想是通过交换操作&#xff0c;将每个数放到它应该在的位置上。然后再次遍历数组&#xff0c;找到第一个不在正确位置上的数&#xff0c;其索引加一即为缺失的最小正整数。 def first_missing_positive(nums):n len(nums)# 第一次遍历&#xff0c;将数组中的每…...

C#使用RabbitMQ-4_路由模式(直连交换机)

简介 RabbitMQ中的路由模式是一种根据Routing Key有条件地将消息筛选后发送给消费者的模式。在路由模式中&#xff0c;生产者向交换机发送消息时&#xff0c;会指定一个Routing Key。交换机接收生产者的消息后&#xff0c;根据消息的Routing Key将其路由到与Routing Key完全匹…...

PyTorch 之 nn.Parameter

文章目录 使用方法&#xff1a;为什么使用 nn.Parameter&#xff1a;示例使用&#xff1a; 在 PyTorch 中&#xff0c;nn.Parameter 是一个类&#xff0c;用于将张量包装成可学习的参数。它是 torch.Tensor 的子类&#xff0c;但被设计成可以被优化器更新的参数。通过将张量包装…...

KAFKA高可用架构涉及常用功能整理

KAFKA高可用架构涉及常用功能整理 1. kafka的高可用系统架构和相关组件2. kafka的核心参数2.1 常规配置2.2 特殊优化配置 3. kafka常用命令3.1 常用基础命令3.1.1 创建topic3.1.2 获取集群的topic列表3.1.3 获取集群的topic详情3.1.4 删除集群的topic3.1.5 获取集群的消费组列表…...

3d模型上的材质怎么删除---模大狮模型网

在大多数3D软件中&#xff0c;可以通过以下步骤来删除3D模型上的材质&#xff1a; 选择要删除材质的模型&#xff1a;首先&#xff0c;从场景中选择包含目标材质的模型。可以使用选择工具或按名称查找模型。 进入编辑模式&#xff1a;将模型切换到编辑模式。这通常需要选择相应…...

leetcode hot100跳跃游戏Ⅱ

本题和上一题还是有不一样的地方&#xff0c;这个题中&#xff0c;我们需要记录我们跳跃的步数并尽可能的满足最小的跳跃步数到达终点。 那么我们还是采用覆盖范围的概念&#xff0c;但是我们需要两个&#xff0c;一个是在当前位置的覆盖范围&#xff0c;另一个是下一步的覆盖…...

大数据期望最大化(EM)算法:从理论到实战全解析

文章目录 大数据期望最大化&#xff08;EM&#xff09;算法&#xff1a;从理论到实战全解析一、引言概率模型与隐变量极大似然估计&#xff08;MLE&#xff09;Jensen不等式 二、基础数学原理条件概率与联合概率似然函数Kullback-Leibler散度贝叶斯推断 三、EM算法的核心思想期…...

【鸿蒙】大模型对话应用(二):对话界面设计与实现

Demo介绍 本demo对接阿里云和百度的大模型API&#xff0c;实现一个简单的对话应用。 DecEco Studio版本&#xff1a;DevEco Studio 3.1.1 Release HarmonyOS SDK版本&#xff1a;API9 关键点&#xff1a;ArkTS、ArkUI、UIAbility、网络http请求、列表布局、层叠布局 对话页…...

MySQL 导入数据

我们可以将已有的数据导入到MySQL数据库中&#xff0c;下面是几种方式&#xff1a; 1、mysql 命令导入 使用 mysql 命令导入语法格式为&#xff1a; mysql -u用户名 -p密码 < 要导入的数据库数据(shulanxt.sql) 实例&#xff1a; # mysql -uroot -p123456 < …...

探索数字经济:从基础到前沿的奇妙旅程

新一轮技术革命方兴未艾&#xff0c;特别是以人工智能、大数据、物联网等为代表的数字技术革命&#xff0c;催生了一系列新技术、新产业、新模式&#xff0c;深刻改变着世界经济面貌。数字经济已成为重组全球要素资源、重塑全球经济结构、改变全球竞争格局的关键力量。预估到20…...

【INTEL(ALTERA)】如何在 Windows 操作系统上设置 Design Space Explorer II 远程 SSH 场

说明 从英特尔 Quartus Prime Pro Edition 软件 22.1 版本开始&#xff0c;您可以选择使用 Windows OpenSSH 服务器设置 Design Space Explorer II &#xff08;DSE II&#xff09;。 解决方法 1.让 DSE II 与 OpenSSH 协同工作的第一步是 安装 OpenSSH。应在远程主机上安装 Op…...

Python编程-使用urllib进行网络爬虫常用内容梳理

Python编程-使用urllib进行网络爬虫常用内容梳理 使用urllib库进行基础网络请求 使用request发起网络请求 from urllib import request from http.client import HTTPResponseresponse: HTTPResponse request.urlopen(url"http://pkc/vul/sqli/sqli_str.php") pr…...

01 Redis的特性+下载安装启动+Redis自动启动+客户端连接

1.1 NoSQL NoSQL&#xff08;“non-relational”&#xff0c; “Not Only SQL”&#xff09;&#xff0c;泛指非关系型的数据库。 键值存储数据库 &#xff1a; 就像 Map 一样的 key-value 对。如Redis文档数据库 &#xff1a; NoSQL 与关系型数据的结合&#xff0c;最像关系…...

C++发起Https请求

Wininet库忽略Https证书 相信很多朋友使用C WINAPI开发的时候网络模块的时候遇到Https忽悠证书无效的情况下&#xff0c; 仍然希望获取结果下列代码便是忽略异常的Https CA证书&#xff0c;下面对原理进行简单的讲解首先, 需要设置Https忽略需要用到如下结果函数与参数Interne…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...