当前位置: 首页 > news >正文

[算法]选择排序

目录

1、选择排序的实现

2、例子

3、代码实现

4、时间复杂度和空间复杂度

5、选择排序的缺点——不稳定性


1、选择排序的实现

选择排序就是每一轮选择最小的元素直接交换到左侧。这种排序的最大优势,就是省去了多余的元素交换。

2、例子

原始数组和选择排序的过程如下图所示,紫色方块代表数组的有序区:

3、代码实现

4、时间复杂度和空间复杂度

算法每一轮选出最小值,再交换到左侧的时间复杂度是O(n),一共 迭代n-1轮,所以总的时间复杂度是O(n^2)。 至于空间复杂度,由于该算法是原地排序,并没有用到额外的存储 空间,所以排序的空间复杂度是O(1)

5、选择排序的缺点——不稳定性

当 数列包含多个值相等的元素时,选择排序有可能打乱它们原有的顺序。例如:

上图中,黄色的元素5原本排在橙色的元素5之前,但是随着第1轮元素3和黄色5的交换,使得后续操作中,黄色的元素5排在了橙色的元素5之后。

相关文章:

[算法]选择排序

目录 1、选择排序的实现 2、例子 3、代码实现 4、时间复杂度和空间复杂度 5、选择排序的缺点——不稳定性 1、选择排序的实现 选择排序就是每一轮选择最小的元素直接交换到左侧。这种排序的最大优势,就是省去了多余的元素交换。 2、例子 原始数组和选择排序的…...

dp模型——状态机模型C++详解

状态机定义状态机顾名思义跟状态有关系,但到底有什么关系呢。在实际解决的时候,通常把状态想成节点,状态的转换想成有向边的有向图,我们来举个例子。相信大家都玩过类似枪战的游戏(没玩过的也听说过吧)&…...

1.4 条件概率与乘法公式

1.4.1 条件概率在实际问题中,除了直接考虑某事件 B 发生的概率P(B)外,有时还会碰到这样的问题,就是“在事件A 已经发生的条件下,事件B 发生的概率”。一般情况下,后概率与前一概率不同,为了区别,我们常把后者称为条件概率,记为P(B…...

VITA/PYTHON/LUPA families

Image Sensor Group Top to Bottom Portfolio in Industrial Imaging Machine Vision • Factory automation and inspection • Robotic vision • Biometrics High-End Surveillance • Aerial Surveillance • Intelligent Traffic Systems (ITS) • Mapping Medical and Sc…...

ChatGPT概述:从模型训练到基本应用的介绍

ChatGPT概述:从模型训练到基本应用的介绍 目录 本文是对ChatGPT的由来、训练过程以及实际落地场景的解释,主要内容包括如下三个方面: 1、ChatGPT是什么 2、ChatGPT的原理 3、ChatGPT的思考 4、ChatGPT的应用 ChatGPT是什么 ChatGPT可能是近…...

C语言实现扫雷【详细讲解+全部源码】

扫雷的实现1. 配置运行环境2. 扫雷游戏的初步实现2.1 建立扫雷分布模块2.2 创建名为board的二维数组并进行棋盘初始化2.3 打印棋盘3. 接下来该讨论的事情3.1 布置雷3.2 排查雷3.3 统计坐标周围有几个雷4. 完整扫雷游戏的实现4.1 game.h4.2 game.c4.3 扫雷.c1. 配置运行环境 本游…...

Vue2.0开发之——购物车案例-Goods组件封装-商品名称和图片(46)

一 概述 循环渲染Goods组件为Goods组件封装title属性为Goods组件封装pic属性 二 循环渲染Goods组件 2.1 App.vue中导入Goods组件 import Goods from /components/Goods/Goods.vue2.2 App.vue中注册Goods组件 components: {Header,Goods}2.3 循环渲染每一个商品的信息 <…...

0201基础-组件-React

1 组件和模块 1.1 模块 对外提供特定功能的js程序&#xff0c;一般就是一个js文件 为什么拆分模块呢&#xff1f;随着业务逻辑增加&#xff0c;代码越来越多&#xff0c;越来越复杂。作用&#xff1a;复用js&#xff0c;简化js&#xff0c;提高js运行效率 1.2 模块化 当应用…...

论文笔记 | Conducting research in marketing with quasi-experiments

这篇论文是Journal of Marketing上的论文&#xff0c;讲了使用准实验来进行论文研究的一些事项。外生性识别的来源、几种准实验方法的注意点还有内生性的解决。 这篇论文对于准实验或者是平常论文的展开有一个非常友善的指导功能&#xff0c;可以阅读~ 摘要&#xff1a;本文旨…...

有关Android导览(Android Navigation component)

文章目录小结有关Android导览(Android Navigation component)碰到的问题参考小结 在使用Android导览(Android Navigation component)碰到很多问题。解决了一些问题&#xff0c;但是“Skipped xxx frames! The application may be doing too much work on its main thread”这样…...

01 C语言计算

C语言计算 1、变量 用途&#xff1a;需要存放输入的数据 定义格式&#xff1a;数据类型 变量名&#xff08;用于区分其他变量&#xff09; 变量名格式&#xff1a;只能由字母/下划线/数字构成&#xff0c;首位不能是数字&#xff1b;且变量名不能是标识符 **变量赋值和初始…...

java单元测试简介(基于SpringBoot)

java单元测试简介&#xff08;基于SpringBoot&#xff09;mockitomock创建mock对象的另一种方式&#xff1a;Mockverifystubbing(存根)Spy&#xff08;间谍&#xff09;mock 静态方法mockito在springboot mock中的实战mockito 通常&#xff0c;在我们写单测时&#xff0c;会遇…...

Linux常用命令操作

文件目录操作 查看文件列表 ls #输出列表信息 ls -l #输出详细列表信息 ls -a #输出隐藏文件 ls -la #输出包含的隐藏文件及详细信息 ll # ls-l的缩写rwx分别对应读取&#xff0c;写入&#xff0c;执行权限&#xff0c;前面有d代表是文件夹 创建文件 touch file.txt #创建…...

SpringCloud GateWay配置—TLS 和 SSL、Http超时配置

一、TLS 和 SSL网关可以按照通常的 Spring 服务器配置侦听 HTTPS 上的请求。 以下示例演示如何执行此操作&#xff1a;application.ymlserver:ssl:enabled: truekey-alias: scgkey-store-password: scg1234key-store: classpath:scg-keystore.p12key-store-type: PKCS12您可以将…...

python Django中的cookies和session会话保持技术

cookies和session都是为了保持会话状态而诞生的两个存储技术会话定义&#xff1a; 从打开浏览器访问一个网站&#xff0c;到关闭浏览器结束此次访问&#xff0c;称之为一次会话HTTP协议是无状态的&#xff0c;导致会话状态难以保持Cookies-定义 cookies是保存在客户端浏览器上的…...

vue3的v-model指令

1. 普通input输入框双向绑定 <template><!-- 1. 普通input输入框双向绑定 --><!-- 其实等价于&#xff1a;<input :modelValue"title" update:modelValue"newTitle>titlenewTitle"/> --><input type"text" v-mod…...

Matlab小波去噪——基于wden函数的去噪分析

文章目录一、问题描述二、代码问题1&#xff1a;原始信号加6分贝高斯白噪声问题2&#xff1a;确定合适的小波基函数问题3&#xff1a;确定最合适的阈值计算估计方法问题4&#xff1a;确定合适的分解层数问题5&#xff1a;实际信号去噪问题6&#xff1a;对比三、演示视频最后一、…...

分布式对象存储——Apache Hadoop Ozone

前言 本文隶属于专栏《大数据技术体系》&#xff0c;该专栏为笔者原创&#xff0c;引用请注明来源&#xff0c;不足和错误之处请在评论区帮忙指出&#xff0c;谢谢&#xff01; 本专栏目录结构和参考文献请见大数据技术体系 1. 概述 Ozone是Apache Hadoop项目的子项目&#xf…...

Linux 和数据库笔记-03

今天主要内容数据库相关介绍数据库(软件)常见类型Navicat 工具基本使用常见的数据类型和约束(重点)SQL 语句的编写(表和数据)一. 数据库是什么?为什么学习数据库软件中产生的所有数据, 最终都要存储于数据库当中测试人员如果想要进行数据查询/数据校验, 就必须掌握对数据库的基…...

布尔定律---布尔代数的基本定律

一、单变量布尔定律 1、0-1定律 2、互补定律 3、重叠定律 4、还原定律 小结&#xff1a;或运算和与运算定律的差别在于&#xff1a;所有的“|”运算符换成“&”&#xff0c;运算结果为 0 换成 1。这就是对偶定律。它不仅是单逻辑变量的定律&#xff0c;而且对于所有布尔定…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...