当前位置: 首页 > news >正文

Vant Weapp小程序 van-uploader 文件上传点击无反应,删除无反应

Vant Weapp 1.0 版本开始支持van-uploader组件,请先确认好版本号和引用路径正确!!

<van-uploader file-list="{{ fileList }}" deletable="{{ true }}" />

1. 上传无反应

微信小程序用了van-uploader,但是发现点击上传一直没有反应,删除也没反应
在这里插入图片描述
最后发现要在微信公众平台配置隐私协议,加上摄像头和照片视频的权限,审核通过后就能用了(好坑)
在这里插入图片描述

2. 无法删除

点击右上角的叉叉无法删除,没有反应
在这里插入图片描述
看了组件源码和文档,发现还得监听事件bind:delete才可以

在这里插入图片描述

<van-uploader file-list="{{ fileList }}" deletable="{{ true }}" bind:delete="delImg" />
// 删除图片delImg(e) {let index = e.detail.indexconsole.log(index) //图片在fileList的下标let fileList = this.data.fileList;fileList.splice(index, 1);this.setData({fileList})},

相关文章:

Vant Weapp小程序 van-uploader 文件上传点击无反应,删除无反应

Vant Weapp 1.0 版本开始支持van-uploader组件&#xff0c;请先确认好版本号和引用路径正确&#xff01;&#xff01; <van-uploader file-list"{{ fileList }}" deletable"{{ true }}" />1. 上传无反应 微信小程序用了van-uploader&#xff0c;但是…...

【力扣】55.跳跃游戏、45.跳跃游戏Ⅱ

55.跳跃游戏 给你一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标&#xff0c;如果可以&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&a…...

038—pandas 重采样线性插补

前言 在数据处理时&#xff0c;由于采集数据量有限&#xff0c;或者采集数据粒度过小&#xff0c;经常需要对数据重采样。在本例中&#xff0c;我们将实现一个类型超分辨率的操作。 思路&#xff1a; 首先将原始数据长度扩展为 3 倍&#xff0c;可以使用 loc[] 方法对索引扩…...

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示(PC端、手机端、平板端)

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示&#xff08;PC端、手机端、平板端&#xff09; 智慧工地系统多端展示&#xff08;PC端、手机端、平板端&#xff09;;数字孪生可视化大屏&#xff0c;一张图掌握项目整体情况;使用轻量化模型&#xff0c;部署三…...

深度学习Top10算法之深度神经网络DNN

深度神经网络&#xff08;Deep Neural Networks&#xff0c;DNN&#xff09;是人工神经网络&#xff08;Artificial Neural Networks&#xff0c;ANN&#xff09;的一种扩展。它们通过模仿人脑的工作原理来处理数据和创建模式&#xff0c;广泛应用于图像识别、语音识别、自然语…...

【智能算法】海马优化算法(SHO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年&#xff0c;Zhao等人受到海马自然社会行为启发&#xff0c;提出了海马优化算法&#xff08;Sea-horse Optimizer, SHO&#xff09;。 2.算法原理 2.1算法思想 SHO模拟了海马群在自然界中的…...

AI大模型学习的伦理与社会影响

AI大模型学习 随着人工智能技术的快速发展&#xff0c;AI大模型学习成为当前热门研究领域之一。AI大模型学习是指基于大规模数据集和深度学习模型进行训练&#xff0c;以实现更高的准确性和复杂性。这些大模型已经在几乎所有领域都取得了显著的成就&#xff0c;包括自然语言处…...

记录些LangChain相关的知识

RAG的输出准确率 RAG的输出准确率 向量信息保留率 * 语义搜索准确率 * LLM准确率RAG的输出准确率由三个因素共同决定&#xff1a;向量信息保留率、语义搜索准确率以及LLM准确率。这三个因素是依次作用的&#xff0c;因此准确率实际上是它们的乘积。这意味着&#xff0c;任何一…...

C语言例4-7:格式字符f的使用例子

%f&#xff0c;实型&#xff0c;小数部分为6位 代码如下&#xff1a; //格式字符f的使用例子 #include<stdio.h> int main(void) {float f 123.456;double d1, d2;d11111111111111.111111111;d22222222222222.222222222;printf("%f,%12f,%12.2f,%-12.2f,%.2f\n&qu…...

[蓝桥杯 2019 省 A] 修改数组

题目链接 [蓝桥杯 2019 省 A] 修改数组 题目描述 给定一个长度为 N N N 的数组 A [ A 1 , A 2 , A 3 , . . . , A N ] A [A_1, A_2, A_3, ...,A_N] A[A1​,A2​,A3​,...,AN​]&#xff0c;数组中有可能有重复出现的整数。 现在小明要按以下方法将其修改为没有重复整数的…...

Git基础(25):Cherry Pick合并指定commit id的提交

文章目录 前言指定commit id合并使用TortoiseGit执行cherry-pick命令 前言 开发中&#xff0c;我们会存在多个分支开发的情况&#xff0c;比如dev&#xff0c;test, prod分支&#xff0c;dev分支在开发新功能&#xff0c;prod作为生产分支已发布。如果某个时候&#xff0c;我们…...

C语言结构体之位段

位段&#xff08;节约内存&#xff09;&#xff0c;和王者段位联想记忆 位段是为了节约内存的。刚好和结构体相反。 那么什么是位段呢&#xff1f;我们现引入情景&#xff1a;我么如果要记录一个人是男是女&#xff0c;用数字0 1表示。我们发现只要一个bit内存就可以完成我们想…...

2016年认证杯SPSSPRO杯数学建模D题(第二阶段)NBA是否有必要设立四分线全过程文档及程序

2016年认证杯SPSSPRO杯数学建模 D题 NBA是否有必要设立四分线 原题再现&#xff1a; NBA 联盟从 1946 年成立到今天&#xff0c;一路上经历过无数次规则上的变迁。有顺应民意、皆大欢喜的&#xff0c;比如 1973 年在技术统计中增加了抢断和盖帽数据&#xff1b;有应运而生、力…...

登录校验解决方案JWT

目录 &#x1f397;️1.JWT介绍 &#x1f39e;️2.应用场景 &#x1f39f;️3.结构组成 &#x1f3ab;4.JWT优点 &#x1f3a0;5.封装成通用方法 &#x1f6dd;6.JWT自动刷新 1.JWT介绍 官网&#xff1a;JWT官网 JSON Web Token (JWT) 是一个开放标准&#xff0c;它…...

Flutter开发进阶之瞧瞧BuildOwner

Flutter开发进阶之瞧瞧BuildOwner 上回说到关于Element Tree的构建还缺最后一块拼图&#xff0c;build的重要过程中会调用_element!.markNeedsBuild();&#xff0c;而markNeedsBuild会调用owner!.scheduleBuildFor(this);。 在Flutter框架中&#xff0c;BuildOwner负责管理构建…...

大量免费工具使用(提供api接口)

标题: 免费工具集使用 - 简化你的任务 介绍&#xff1a; 在数字化时代&#xff0c;我们经常需要使用各种工具来完成各种任务。本文将介绍一个免费工具集&#xff0c;它提供了多种实用工具&#xff0c;帮助简化你的任务。这些工具可以在网站 https://tool.kertennet.com 上找到…...

网络探测工具Nmap介绍

1. Nmap简介 Nmap是一款用于网络发现和安全审计的网络安全工具。可用于列举网络主机清单、管理服务升级调度、监控主机、监控主机服务运行状况、检测目标主机是否在线和端口开放情况、侦测运行的服务类型及版本信息、侦测操作系统与设备类型等。 2. 命令大纲 3. 命令详细介绍…...

20240319-2-机器学习基础面试题

⽼板给了你⼀个关于癌症检测的数据集&#xff0c;你构建了⼆分类器然后计算了准确率为 98%&#xff0c; 你是否对这个模型很满意&#xff1f;为什么&#xff1f;如果还不算理想&#xff0c;接下来该怎么做&#xff1f; 首先模型主要是找出患有癌症的患者&#xff0c;模型关注的…...

0202矩阵的运算-矩阵及其运算-线性代数

文章目录 一、矩阵的加法二、数与矩阵相乘三、矩阵与矩阵相乘四、矩阵的转置五、方阵的行列式结语 一、矩阵的加法 定义2 设有两个 m n m\times n mn橘子 A ( a i j ) 和 B ( b i j ) A(a_{ij})和B(b_{ij}) A(aij​)和B(bij​),那么矩阵A与B的和记为AB,规定为 A B ( a 11…...

python中的__dict__

类的__dict__返回的是&#xff1a;类的静态函数、类函数、普通函数、全局变量以及一些内置的属性都是放在类的__dict__里的&#xff0c; 而实例化对象的&#xff1a;__dict__中存储了一些类中__init__的一些属性值。 import的py文件 __dict__返回的是&#xff1a;__init__的…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙

WebGL&#xff1a;在浏览器中解锁3D世界的魔法钥匙 引言&#xff1a;网页的边界正在消失 在数字化浪潮的推动下&#xff0c;网页早已不再是静态信息的展示窗口。如今&#xff0c;我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室&#xff0c;甚至沉浸式的V…...

【工具教程】多个条形码识别用条码内容对图片重命名,批量PDF条形码识别后用条码内容批量改名,使用教程及注意事项

一、条形码识别改名使用教程 打开软件并选择处理模式&#xff1a;打开软件后&#xff0c;根据要处理的文件类型&#xff0c;选择 “图片识别模式” 或 “PDF 识别模式”。如果是处理包含条形码的 PDF 文件&#xff0c;就选择 “PDF 识别模式”&#xff1b;若是处理图片文件&…...

MLP实战二:MLP 实现图像数字多分类

任务 实战&#xff08;二&#xff09;&#xff1a;MLP 实现图像多分类 基于 mnist 数据集&#xff0c;建立 mlp 模型&#xff0c;实现 0-9 数字的十分类 task: 1、实现 mnist 数据载入&#xff0c;可视化图形数字&#xff1b; 2、完成数据预处理&#xff1a;图像数据维度转换与…...

基于django+vue的健身房管理系统-vue

开发语言&#xff1a;Python框架&#xff1a;djangoPython版本&#xff1a;python3.8数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat12开发软件&#xff1a;PyCharm 系统展示 会员信息管理 员工信息管理 会员卡类型管理 健身项目管理 会员卡管理 摘要 健身房管理…...

[10-1]I2C通信协议 江协科技学习笔记(17个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...

FTPS、HTTPS、SMTPS以及WebSockets over TLS的概念及其应用场景

一、什么是FTPS&#xff1f; FTPS&#xff0c;英文全称File Transfer Protocol with support for Transport Layer Security (SSL/TLS)&#xff0c;安全文件传输协议&#xff0c;是一种对常用的文件传输协议(FTP)添加传输层安全(TLS)和安全套接层(SSL)加密协议支持的扩展协议。…...