NBM 算法【python,算法,机器学习】
朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。
贝叶斯定理
P ( A ∣ B ) = P ( B ∣ A ) ∗ P ( A ) P ( B ) P(A|B)=\frac{P(B|A) * P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)∗P(A)
其中A
表示分类,B
表示属性,因此此公式更通俗的表述如下:
P ( 分类 ∣ 属性 ) = P ( 属性 ∣ 分类 ) ∗ P ( 分类 ) P ( 属性 ) P(分类|属性)=\frac{P(属性|分类) * P(分类)}{P(属性)} P(分类∣属性)=P(属性)P(属性∣分类)∗P(分类)
即在已知属性B
的前提下,分类为A
的概率等于似然率(已知分类中属性B
的概率)乘以先验概率(分类A
的概率)除以证据概率(属性B
的概率)。
优点
- 对于大量数据的预测靠谱。
- 计算简便。
缺点
- 属性之间必须独立。
- 选取没有相互干涉的属性是难点。
举例:在夏季,某公园男性穿凉鞋的概率为 1/2 ,女性穿凉鞋的概率为 2/3 ,
并且该公园中男女比例通常为 2:1 ,问题:若你在公园中随机遇到一个穿凉鞋的人,
请问他的性别为男性或女性的概率分别为多少?
P(男|穿凉鞋)=P(穿凉鞋|男)P(男)/P(穿凉鞋)
= 1/2 * 2/3 / (2/3 * 1/2 + 1/3 2/3)
= 1/3 / (1/3+2/9)
= 3/5
P(女|穿凉鞋)=P(穿凉鞋|女)P(女)/P(穿凉鞋)
= 2/3 * 1/3 / (2/3 * 1/2 + 1/3 2/3)
= 2/9 / (1/3+2/9)
= 2/9 * 9/5
= 2/5
所以在公园里,随机遇到一个穿凉鞋的人,性别为女男的概率是 3/5,性别为女的概率为 2/5。
怎样避免0概率问题
使用拉普拉斯修正,修改公式如下:
P ^ ( C = c j ) = N ( c j ) + 1 N + C \hat{P}(C=c_j)=\frac{N(c_j)+1}{N+C} P^(C=cj)=N+CN(cj)+1
上式表示 c j c_j cj分类的概率,其中 C 表示分类数量,N 表示所有的数量。
P ^ ( x i ∣ C = c j ) = N ( x i ∣ C = c j ) + 1 N + X \hat{P}(x_i|C=c_j)=\frac{N(x_i|C=c_j)+1}{N+X} P^(xi∣C=cj)=N+XN(xi∣C=cj)+1
上式表示特定 x i x_i xi属性中类 c j c_j cj的概率,其中 X 表示属性数量。
高斯朴素贝叶斯分类器
- 高斯分布
P ( x i ∣ μ , σ ) = 1 ( 2 π σ 2 ) 1 2 ∗ e − ( x i − μ ) 2 2 σ 2 P(x_i|\mu,\sigma)=\frac{1}{(2\pi \sigma^2)^{\frac{1}{2}}} * e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} P(xi∣μ,σ)=(2πσ2)211∗e−2σ2(xi−μ)2
其中 μ = 1 N ∑ i = 1 N x i \mu=\frac{1}{N}\sum\limits_{i=1}^{N}x_i μ=N1i=1∑Nxi表示样本的期望, σ 2 = 1 N ∑ i = 1 N ( x i − μ ) 2 \sigma^2=\frac{1}{N}\sum\limits_{i=1}^{N}(x_i-\mu)^2 σ2=N1i=1∑N(xi−μ)2表示样本的方差。
如果要使用无偏差估计,N 取 N+1。 - 如果特征值服从高斯分布,那么根据特征值估计分类概率的公式如下:
P ^ ( x i ∣ C = c i ) = 1 ( 2 π σ i j 2 ) 1 2 ∗ e − ( x i − μ i j ) 2 2 σ i j 2 \hat{P}(x_i|C=c_i)=\frac{1}{(2\pi \sigma_{ij}^2)^{\frac{1}{2}}} * e^{-\frac{(x_i-\mu{ij})^2}{2\sigma_{ij}^2}} P^(xi∣C=ci)=(2πσij2)211∗e−2σij2(xi−μij)2
其中 μ i j \mu_{ij} μij表示分类为 c i c_i ci时,属性 x j x_j xj的期望,
σ i j 2 \sigma_{ij}^2 σij2表示分了为 c i c_i ci时,属性 x j x_j xj的方差。
相关文章:
NBM 算法【python,算法,机器学习】
朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。 贝叶斯定理 P ( A ∣ B ) P ( B ∣ A ) ∗ P ( A ) P ( B ) P(A|B)\frac{P(B|A) * P(A)}{P(B)} P(A∣B)P(B)P(B∣A)∗P(A) 其中A表示分类,B表示属性&…...
spark3.0.1版本查询Hbase数据库例子
需求背景 现有需求,需要采用spark查询hbase数据库的数据同步到中间分析库,记录spark集成hbase的简单例子代码 import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.client.{ConnectionFactory, Scan} import org.apach…...

android高效读图方式——Hardwarebuffer读图
安卓上有许许多多使用OpenGL来渲染的原因,比方说做特效/动画/硬解/人脸识别等等。渲染完成后如何从gpu中把数据快速读取出来也是高效图像处理中的重要的一环。 相对于glReadPixel的同步读取方式,安卓GLES3.0提供了更高效快速的Hardwarebuffer读图方式&a…...
悉数六大设计原则
悉数六大设计原则 目录 悉数六大设计原则前言☕谁发明了设计模式设计原则设计原则与设计模式的关系 单一职责什么是单一职责不遵循单一职责原则的设计遵循单一职责原则的设计单一职责的优点示例代码: 里氏替换原则什么是里氏替换原则示例代码:违反里氏替…...
hdfs复习
一.hadoop概述 1.4高(优势) 1).高可靠性:hadoop底层多个数据副本,即使某个计算节点存储出现故障,不会导致数据丢失。 2).高扩展性:可以动态增加服务器节点。 3).高效…...

css-Ant-Menu 导航菜单更改为左侧列表行选中
1.Ant-Menu导航菜单 导航菜单是一个网站的灵魂,用户依赖导航在各个页面中进行跳转。一般分为顶部导航和侧边导航,顶部导航提供全局性的类目和功能,侧边导航提供多级结构来收纳和排列网站架构。 2.具体代码 html <!-- 左侧切换 --><…...

02-CSS3基本样式
目录 1. CSS3简介 1.1 CSS3的兼容情况 1.2 优雅降级和渐进增强的开发思想 2. 新增选择器 2.1 选择相邻兄弟 2.2 匹配选择器 2.3 属性选择器(重点) 2.4 结构性伪类选择器(重点) 2.4.1 整体结构类型 2.4.2 标签结构类型 2.4.3 指定子元素的序号&…...

USART串口外设
USART介绍 USART:另外我们经常还会遇到串口,叫UART,少了个S,就是通用异步收发器,一般我们串口很少使用这个同步功能,所以USART和UART使用起来,也没有什么区别。 其实这个STM32的USART同步模式&a…...

大模型应用之基于Langchain的测试用例生成
一 用例生成实践效果 在组内的日常工作安排中,持续优化测试技术、提高测试效率始终是重点任务。近期,我们在探索实践使用大模型生成测试用例,期望能够借助其强大的自然语言处理能力,自动化地生成更全面和高质量的测试用例。 当前…...

C++之map
1、标准库的map类型 2、插入数据 #include <map> #include <string> #include <iostream>using namespace std;int main() {map<string, int> mapTest;// 插入到map容器内部的元素是默认按照key从小到大来排序// key类型一定要重载小于号<运算符map…...
【量算分析工具-方位角】GeoServer改造Springboot番外系列六
【量算分析工具-概述】GeoServer改造Springboot番外系列三-CSDN博客 【量算分析工具-水平距离】GeoServer改造Springboot番外系列四-CSDN博客 【量算分析工具-水平面积】GeoServer改造Springboot番外系列五-CSDN博客 【量算分析工具-方位角】GeoServer改造Springboot番外系列…...

【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
文章目录 引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习 大模型概述GPT-3BERTResNetTransformer 机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译 图像识别自动驾驶医学影像分析 语音识别智能助手语音转文字 大模型性能优化的新探索…...

上传图片并显示#Vue3#后端接口数据
上传图片并显示#Vue3#后端接口数据 效果: 上传并显示图片 代码: <!-- 上传图片并显示 --> <template><!-- 上传图片start --><div><el-form><el-form-item><el-uploadmultipleclass"avatar-uploader&quo…...

音视频开发14 FFmpeg 视频 相关格式分析 -- H264 NALU格式分析
H264简介-也叫做 AVC H.264,在MPEG的标准⾥是MPEG-4的⼀个组成部分–MPEG-4 Part 10,⼜叫Advanced Video Codec,因此常常称为MPEG-4 AVC或直接叫AVC。 原始数据YUV,RGB为什么要压缩-知道就行 在⾳视频传输过程中,视频⽂件的传输…...

Qt学习记录(15)数据库
目录 前言: 数据库连接 项目文件加上sql 打印查看Qt支持哪些数据库驱动 QMYSQL [static] QSqlDatabase QSqlDatabase::addDatabase(const QString &type, const QString &connectionName QLatin1String(defaultConnection)) 数据库插入 头文件.h 源…...
c++常用设计模式
1、单例模式(Singleton):保证一个类只有一个实例,提供一个全局访问点; class Singleton { private:static Singleton* instance;Singleton() {}public:static Singleton* getInstance() {if (instance nullptr) {instance new Singleton()…...

【动手学深度学习】softmax回归从零开始实现的研究详情
目录 🌊1. 研究目的 🌊2. 研究准备 🌊3. 研究内容 🌍3.1 softmax回归的从零开始实现 🌍3.2 基础练习 🌊4. 研究体会 🌊1. 研究目的 理解softmax回归的原理和基本实现方式;学习…...

MySQL:MySQL执行一条SQL查询语句的执行过程
当多个客户端同时连接到MySQL,用SQL语句去增删改查数据,针对查询场景,MySQL要保证尽可能快地返回客户端结果。 了解了这些需求场景,我们可能会对MySQL进行如下设计: 其中,连接器管理客户端的连接,负责管理连接、认证鉴权等;查询缓存则是为了加速查询,命中则直接返回结…...
解决Python导入第三方模块报错“TypeError: the first argument must be callable”
注意以下内容只对导包时遇到同样的报错会有参考价值。 问题描述 当你尝试导入第三方模块时,可能会遇到如下报错信息: TypeError: the first argument must be callable 猜测原因 经过仔细检查代码,我猜测这个错误的原因是由于变量名冲突所…...
在python中连接了数据库后想要在python中通过图形化界面显示数据库的查询结果,请问怎么实现比较好? /ttk库的treeview的使用
在Python中,你可以使用图形用户界面(GUI)库来显示数据库的查询结果。常见的GUI库包括Tkinter(Python自带)、PyQt、wxPython等。以下是一个使用Tkinter库来显示数据库查询结果的简单示例。 首先,你需要确保…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...