当前位置: 首页 > news >正文

kotlin Flow 学习指南 (三)最终篇

目录

  • 前言
  • Flow生命周期
  • StateFlow 替代LiveData
  • SharedFlow
  • 其他常见应用场景
    • 处理复杂、耗时逻辑
    • 存在依赖关系的接口请求
    • 组合多个接口的数据
  • Flow使用注意事项
  • 总结

前言

前面两篇文章,介绍了Flow是什么,如何使用,以及相关的操作符进阶,接下来这篇文章,主要介绍Flow在实际项目中使用。

Flow生命周期

在介绍Flow实际应用场景之前,我们先回顾Flow第一篇介绍的计时器例子,我们在ViewModel定义了一个timeFlow数据流:

class MainViewModel : ViewModel() {val timeFlow = flow {var time = 0while (true) {emit(time)delay(1000)time++}
}

然后Activity里面,接收前面定义的数据流。

lifecycleOwner.lifecycleScope.launch {viewModel.timeFlow.collect { time ->times = timeLog.d("ddup", "update UI $times")}}

我运行看下实际效果:

flow1.gif

你们有没有发现,App切换到后台时,日志还在打印,这不是对资源的浪费,我们修改一下接收的地方代码:

lifecycleOwner.lifecycleScope.launchWhenStarted {viewModel.timeFlow.collect { time ->times = timeLog.d("ddup", "update UI $times")}}

我们把协程开启的方法,从launch改成launchWhenStarted,再运行看下效果:

flow2.gif

我们可以看到,当点击HOME键,退回到后台的时候,日志不再打印了,由此可见,改动生效了,但是流取消接收了吗,我们切回到前台看下:

flow3.gif

切换到前台,我们可以看到,计数器并没有从0开始,所以其实它并没有取消接收,只是在后台暂停接收数据了,Flow管道还保留之前的数据,事实上这个launchWhenStarted API已经废弃了,Google更推荐repeatOnLifecycle来代替它,并且它不会存在管道中保留旧数据问题。
我们尝试改造一下对应代码:

lifecycleOwner.lifecycleScope.launch {lifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {viewModel.timeFlow.collect { time ->times = timeLog.d("ddup", "update UI $times")}}
}

重新运行看下效果:

flow4.gif

我们可以看到,从后台切回到前台数据又从0开始了,说明切换到后台,Flow取消工作了,原来的数据全部清空了。

我们在使用Flow,通过repeatOnLifecycle,更能保证我们程序的安全性。

StateFlow 替代LiveData

前面介绍的都是Flow冷流例子,接下来将会介绍一些热流常见的应用场景。
还是前面的计时器的例子,假如横竖屏切换后,又会出现什么情况呢?

flow5.gif

我们可以看到,横竖屏切换后,Activity重新创建,重新创建后,timeFlow会重新collect,冷流被重新collect后重新执行,然后计时器又从0开始计时了,很多时候,我们希望横竖屏切换时,希望页面的状态是保持不变的,至少在一定时间内不被改变的,这里我们冷流修改成热流试下:

val hotFlow =timeFlow.stateIn(viewModelScope,SharingStarted.WhileSubscribed(5000),0)```
lifecycleOwner.lifecycleScope.launch {lifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {viewModel.hotFlow.collect { time ->times = timeLog.d("ddup", "update UI $times")}}
}
```

这里着重说下stateIn里面的三个参数,第一个是协程的作用域,第二个是flow保持工作状态最大有效时间,超过flow就会停止工作,最后一个参数是初始值。

重新运行看下效果:

flow6.gif

这里我们可以看到横竖屏切换后,打印的日志,计时器不会从0开始了。
我们上面介绍了一个冷流如何修改变成热流的,这里还没有介绍stateFlow如何代替LiveData,下面介绍一下,stateFlow替代LiveData用法:

private val _stateFlow = MutableStateFlow(0)
val stateFlow = _stateFlow.asStateFlow()fun startTimer() {val timer = Timer()timer.scheduleAtFixedRate(object :TimerTask() {override fun run() {_stateFlow.value += 1}},0,1000)
}```viewModel.startTimer()lifecycleOwner.lifecycleScope.launch {lifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {viewModel.stateFlow.collect { time ->times = timeLog.d("ddup", "update UI $times")}}
}
```

我们定义了一个StateFlow热流,然后通过一个startTimer()方法改变stateFlow值类似LiveData setData,点击按钮时,开始改变StateFlow值并收集对应流的值类似LiveData Observe方法监听数据变化。
下面看下实际运行效果:

flow7.gif

到这里,我们介绍完了StateFlow基本用法,下面来介绍SharedFlow。

SharedFlow

要理解SharedFlow,我们先知道个概念,粘性事件,按字面理解就是,观察者订阅数据源时,如果数据源已经有最新的数据,那么这些数据会立即推送给观察者。从上面的解释来看,LiveData是符合这个粘性特性的,同样的StateFlow呢?我们写个简单的demo验证一下:


class MainViewModel : ViewModel() {private val _clickCountFlow = MutableStateFlow(0)val clickCountFlow = _clickCountFlow.asStateFlow()fun increaseClickCount() {_clickCountFlow.value += 1
}
}
//MainActivity
```
val tv = findViewById<TextView>(R.id.tv_content)
val btn = findViewById<Button>(R.id.btn)
btn.setOnClickListener {viewModel.increaseClickCount()
}lifecycleScope.launch {repeatOnLifecycle(Lifecycle.State.STARTED) {viewModel.clickCountFlow.collect { time ->tv.text = time.toString()Log.d("ddup", "update UI $time")}}
}
```

我们首先在MainViewModel,定义了一个clickCountFlow,然后在Activity,通过Button点击对clickCountFlow数据改变,然后接收clickCountFlow并把数据显示在文本上。
下面看下运行效果:

flow8.gif

我们可以看到横竖屏切换的时候,Activity重新创建,clickCountFlow重新收集后,数据还是从之前的4开始的,说明StateFlow是粘性的,在这里看上去没有问题,但是我们看另外一个例子,我们模拟一个点击登陆的场景,点击登陆按钮,实现登陆并登陆:

//MainViewModelprivate val _loginFlow = MutableStateFlow("")val loginFlow = _loginFlow.asStateFlow()fun startLogin() {// Handle login logic here._loginFlow.value = "Login Success"}
//MainActivity```
val tv = findViewById<TextView>(R.id.tv_content)
val btn = findViewById<Button>(R.id.btn)
btn.setOnClickListener {viewModel.startLogin()
}lifecycleScope.launch {repeatOnLifecycle(Lifecycle.State.STARTED) {viewModel.loginFlow.collect {if (it.isNotBlank()) {Toast.makeText(this@MainActivity2, it, Toast.LENGTH_LONG).show()}}}
}
```

上述代码实际就是模拟一个点击登陆,然后会提示登陆成功,我们看下实际运行效果:

flow9.gif

看到没有,横竖屏切换后,登陆成功的提示重新弹出一遍,我们并没有走重新登陆流程,这就是粘性事件带来的数据重复接收的问题,上面代码,我们改成SharedFlow试下:

    private val _loginFlow = MutableSharedFlow<String>()val loginFlow = _loginFlow.asSharedFlow()fun startLogin() {// Handle login logic here.viewModelScope.launch {_loginFlow.emit("Login Success")}}

我们StateFlow改成SharedFlow,我们可以看到SharedFlow不需要初始值,登陆的地方增加了emit方法发送数据,接收数据的地方不变,重新运行下看下效果:

flow10.gif

这里我们可以看到使用SharedFlow不会出现这个粘性问题,其实SharedFlow还有很多参数可以配置的:

    public fun <T> MutableSharedFlow(// 每个新的订阅者订阅时收到的回放的数目,默认0replay: Int = 0,// 除了replay数目之外,缓存的容量,默认0extraBufferCapacity: Int = 0,// 缓存区溢出时的策略,默认为挂起。只有当至少有一个订阅者时,onBufferOverflow才会生效。当无订阅者时,只有最近replay数目的值会保存,并且onBufferOverflow无效。onBufferOverflow: BufferOverflow = BufferOverflow.SUSPEND)

SharedFlow更多用法,有待大家去发掘啊,这里不过赘述了。

其他常见应用场景

前面介绍了从基本冷流到热流,以及StateFlow、SharedFlow常见用法,适用场景,接下来,我们围绕几个实际例子,看看flow其他常见应用场景。

处理复杂、耗时逻辑

我们一般做一些复杂的耗时逻辑,放在子线程处理,然后切换到主线程展示UI,同样的Flow也支持线程切换,flowOn可以让之前的操作放到对应的子线程处理。
我们实现一个读取本地Assets目录下的person.json文件,并将其解析出来,json文件中的内容:

{"name": "ddup","age": 101,"interest": "earn money..."
}

然后解析文件:

fun getAssetJsonInfo(context: Context, fileName: String): String {val strBuilder = StringBuilder()var input: InputStream? = nullvar inputReader: InputStreamReader? = nullvar reader: BufferedReader? = nulltry {input = context.assets.open(fileName, AssetManager.ACCESS_BUFFER)inputReader = InputStreamReader(input, StandardCharsets.UTF_8)reader = BufferedReader(inputReader)var line: String?while ((reader.readLine().also { line = it }) != null) {strBuilder.append(line)}} catch (ex: Exception) {ex.printStackTrace()} finally {try {input?.close()inputReader?.close()reader?.close()} catch (e: IOException) {e.printStackTrace()}}return strBuilder.toString()
}

Flow读取文件:

/*** 通过Flow方式,获取本地文件*/
private fun getFileInfo() {lifecycleScope.launch {flow {//解析本地json文件,并生成对应字符串val configStr = getAssetJsonInfo(this@MainActivity2, "person.json")//最后将得到的实体类发送到下游emit(configStr)}.map { json ->Gson().fromJson(json, PersonModel::class.java) //通过Gson将字符串转为实体类}.flowOn(Dispatchers.IO) //在flowOn之上的所有操作都是在IO线程中进行的.onStart { Log.d("ddup", "onStart") }.filterNotNull().onCompletion { Log.d("ddup", "onCompletion") }.catch { ex -> Log.d("ddup", "catch:${ex.message}") }.collect {Log.d("ddup", "collect parse result:$it")}}
}

最终打印日志:

2024-07-09 22:00:34.006 12251-12251 ddup com.ddup.flowtest D onStart 2024-07-09 22:00:34.018 12251-12251 ddup com.ddup.flowtest D collect parse result:PersonModel(name=ddup, age=101, interest=earn money...) 2024-07-09 22:00:34.019 12251-12251 ddup com.ddup.flowtest D onCompletion

存在依赖关系的接口请求

我们经常会遇到接口请求依赖另外一个请求的结果,也就是所谓的嵌套请求,嵌套过多的就会出现回调地狱,我们通过FLow来实现一个类似的需求:

lifecycleScope.launch {lifecycle.repeatOnLifecycle(Lifecycle.State.STARTED) {//将两个flow串联起来 先搜索目的地,然后到达目的地viewModel.getTokenFlows().flatMapConcat {//第二个flow依赖第一个的结果viewModel.getUserFlows(it)}.collect {tv.text = it ?: "error"}}
}

组合多个接口的数据

组合多个接口的数据是一个什么样的场景呢,比如说,我们存在请求多个接口,然后把它们的结果合并起来统一展示或者作为另外一个接口的请求参数,试问一下,该如何实现呢:
第一种,一个一个请求,然后合并;
第二种,并发请求,然后全部请求完了合并。
显然,第二种效果比较高效,下面看下代码:

//分别请求电费、水费、网费,Flow之间是并行关系
suspend fun requestElectricCost(): Flow<SpendModel> =flow {delay(500)emit(SpendModel("电费", 10f, 500))}.flowOn(Dispatchers.IO)suspend fun requestWaterCost(): Flow<SpendModel> =flow {delay(1000)emit(SpendModel("水费", 20f, 1000))}.flowOn(Dispatchers.IO)suspend fun requestInternetCost(): Flow<SpendModel> =flow {delay(2000)emit(SpendModel("网费", 30f, 2000))}.flowOn(Dispatchers.IO)

首先,我们在ViewModel模拟定义了,几个网络请求,接下来合并请求:

lifecycleScope.launch {val electricFlow = viewModel.requestElectricCost()val waterFlow = viewModel.requestWaterCost()val internetFlow = viewModel.requestInternetCost()val builder = StringBuilder()var totalCost = 0fval startTime = System.currentTimeMillis()//NOTE:注意这里可以多个zip操作符来合并Flow,且多个Flow之间是并行关系electricFlow.zip(waterFlow) { electric, water ->totalCost = electric.cost + water.costbuilder.append("${electric.info()},\n").append("${water.info()},\n")}.zip(internetFlow) { two, internet ->totalCost += internet.costtwo.append(internet.info()).append(",\n\n总花费:$totalCost")}.collect {tv.text = it.append(",总耗时:${System.currentTimeMillis() - startTime} ms")Log.d("ddup","${it.append(",总耗时:${System.currentTimeMillis() - startTime} ms")}")}
}

运行结果:
flow11.png
我们看到总花费时间,跟最长请求的时间基本一致。

Flow使用注意事项

多个Flow不能放到一个lifecycleScope.launch里去collect{},因为进入collect{}相当于一个死循环,下一行代码永远不会执行;如果就想写到一个lifecycleScope.launch{}里去,可以在内部再开启launch{}子协程去执行。
错误示范:

lifecycleScope.launch {flow1.flowWithLifecycle(lifecycle, Lifecycle.State.STARTED).collect {}flow2.flowWithLifecycle(lifecycle, Lifecycle.State.STARTED).collect {}
}

正确写法:

lifecycleScope.launch {launch {flow1.flowWithLifecycle(lifecycle, Lifecycle.State.STARTED).collect {}}launch {flow2.flowWithLifecycle(lifecycle, Lifecycle.State.STARTED).collect {}}
}

总结

我们从Flow的生命周期,介绍了flow正确使用姿势,避免资源的浪费,到普通的冷流转换成热流,再到StateFlow代替LiveData,以及它的粘性问题,然后通过SharedFlow解决粘性问题,再到常见应用场景,最后到Flow使用注意事项,基本涵盖了Flow大部分特性、应用场景,这也是Flow学习的最终篇。
创作不易,喜欢的麻烦点赞、收藏、评论,以资鼓励
参考文章
Kotlin Flow响应式编程,StateFlow和SharedFlow

Kotlin | Flow数据流的几种使用场景

相关文章:

kotlin Flow 学习指南 (三)最终篇

目录 前言Flow生命周期StateFlow 替代LiveDataSharedFlow其他常见应用场景处理复杂、耗时逻辑存在依赖关系的接口请求组合多个接口的数据 Flow使用注意事项总结 前言 前面两篇文章&#xff0c;介绍了Flow是什么&#xff0c;如何使用&#xff0c;以及相关的操作符进阶&#xff…...

Memcached负载均衡:揭秘高效缓存分发策略

标题&#xff1a;Memcached负载均衡&#xff1a;揭秘高效缓存分发策略 在分布式缓存系统中&#xff0c;Memcached通过负载均衡技术来提高缓存效率和系统吞吐量。负载均衡确保了缓存请求能够均匀地分配到多个缓存节点上&#xff0c;从而防止任何一个节点过载。本文将深入探讨Me…...

【Python实战因果推断】31_双重差分2

目录 Canonical Difference-in-Differences Diff-in-Diff with Outcome Growth Canonical Difference-in-Differences 差分法的基本思想是&#xff0c;通过使用受治疗单位的基线&#xff0c;但应用对照单位的结果&#xff08;增长&#xff09;演变&#xff0c;来估算缺失的潜…...

ArcGIS中使用线快速构造成面的方法

准备工作&#xff1a;一个需要转化为面的封闭线&#xff1b;一个处于可编辑状态的面要素文件。 1.选中一个围合封闭成的线 2.点击高级编辑工具中的构造面小工具 3.弹出对话框&#xff0c;直接点确定即可 4.效果如下图&#xff1a; 特别注意&#xff1a;记得要把面图层编辑功能…...

Spring AOP的几种实现方式

1.通过注解实现 1.1导入依赖 <dependency><groupId>org.springframework</groupId><artifactId>spring-aop</artifactId><version>5.1.6.RELEASE</version></dependency> 1.2定义注解 import java.lang.annotation.*;Targ…...

字节码编程bytebuddy之实现抽象类并并添加自定义注解

写在前面 本文看下使用bytebuddy如何实现抽象类&#xff0c;并在子类中添加自定义注解。 1&#xff1a;代码 1.1&#xff1a;准备基础代码 类和方法注解 package com.dahuyou.bytebuddy.cc.mine;import java.lang.annotation.ElementType; import java.lang.annotation.Re…...

LLM-阿里云 DashVector + ModelScope 多模态向量化实时文本搜图实战总结

文章目录 前言步骤图片数据Embedding入库文本检索 完整代码 前言 本文使用阿里云的向量检索服务&#xff08;DashVector&#xff09;&#xff0c;结合 ONE-PEACE多模态模型&#xff0c;构建实时的“文本搜图片”的多模态检索能力。整体流程如下&#xff1a; 多模态数据Embedd…...

CentOS7安装部署git和gitlab

安装Git 在Linux系统中是需要编译源码的&#xff0c;首先下载所需要的依赖&#xff1a; yum install -y curl-devel expat-devel gettext-devel openssl-devel zlib-devel gcc perl-ExtUtils-MakeMaker方法一 下载&#xff1a; wget https://mirrors.edge.kernel.org/pub/s…...

《昇思25天学习打卡营第16天|基于MindNLP+MusicGen生成自己的个性化音乐》

MindNLP 原理 MindNLP 是一个自然语言处理&#xff08;NLP&#xff09;框架&#xff0c;用于处理和分析文本数据。 文本预处理&#xff1a;包括去除噪声、分词、词性标注、命名实体识别等步骤&#xff0c;使文本数据格式化并准备好进行进一步分析。 特征提取&#xff1a;将文…...

算法学习day10(贪心算法)

贪心算法&#xff1a;由局部最优->全局最优 贪心算法一般分为如下四步&#xff1a; 将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解 一、摆动序列&#xff08;理解难&#xff09; 连续数字之间的差有正负的交替&…...

卡尔曼滤波Kalman Filter零基础入门到实践(上部)

参考视频&#xff1a;入门&#xff08;秒懂滤波概要&#xff09;_哔哩哔哩_bilibili 一、入门 1.引入 假设超声波距离传感器每1ms给单片机发数据。 理论数据为黑点&#xff0c; 测量数据曲线为红线&#xff0c;引入滤波后的数据为紫线 引入滤波的作用是过滤数据中的噪声&a…...

力扣-dfs

何为深度优先搜索算法&#xff1f; 深度优先搜索算法&#xff0c;即DFS。就是找一个点&#xff0c;往下搜索&#xff0c;搜索到尽头再折回&#xff0c;走下一个路口。 695.岛屿的最大面积 695. 岛屿的最大面积 题目 给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相…...

keepalived高可用集群

一、keepalived&#xff1a; 1.keepalive是lvs集群中的高可用架构&#xff0c;只是针对调度器的高可用&#xff0c;基于vrrp来实现调度器的主和备&#xff0c;也就是高可用的HA架构&#xff1b;设置一台主调度器和一台备调度器&#xff0c;在主调度器正常工作的时候&#xff0…...

文献翻译与阅读《Integration Approaches for Heterogeneous Big Data: A Survey》

CYBERNETICS AND INFORMATION TECHNOLOGIES’24 论文原文下载地址&#xff1a;原文下载 目录 1 引言 2 大数据概述 3 大数据的异构性 4 讨论整合方法 4.1 大数据仓库&#xff08;BDW&#xff09; 4.2 大数据联盟&#xff08;BDF&#xff09; 5 DW 和 DF 方法的比较、分…...

应用最优化方法及MATLAB实现——第3章代码实现

一、概述 在阅读最优方法及MATLAB实现后&#xff0c;想着将书中提供的代码自己手敲一遍&#xff0c;来提高自己对书中内容理解程度&#xff0c;巩固一下。 这部分内容主要针对第3章的内容&#xff0c;将其所有代码实现均手敲一遍&#xff0c;中间部分代码自己根据其公式有些许的…...

django的增删改查,排序,分组等常用的ORM操作

Django 的 ORM&#xff08;对象关系映射&#xff09;提供了一种方便的方式来与数据库进行交互。 1. Django模型 在 myapp/models.py 中定义一个示例模型&#xff1a;python from django.db import modelsclass Person(models.Model):name models.CharField(max_length100)age…...

Leetcode Java学习记录——树、二叉树、二叉搜索树

文章目录 树的定义树的遍历中序遍历代码 二叉搜索树 常见二维数据结构&#xff1a;树/图 树和图的区别就在于有没有环。 树的定义 public class TreeNode{public int val;public TreeNode left,right;public TreeNode(int val){this.val val;this.left null;this.right nu…...

华为HCIP Datacom H12-821 卷30

1.单选题 以下关于OSPF协议报文说法错误的是? A、OSPF报文采用UDP报文封装并且端口号是89 B、OSPF所有报文的头部格式相同 C、OSPF协议使用五种报文完成路由信息的传递 D、OSPF所有报文头部都携带了Router-ID字段 正确答案:A 解析: OSPF用IP报文直接封装协议报文,…...

element el-table实现表格动态增加/删除/编辑表格行,带校验规则

本篇文章记录el-table增加一行可编辑的数据列&#xff0c;进行增删改。 1.增加空白行 直接在页面mounted时对form里面的table列表增加一行数据&#xff0c;直接使用push() 方法增加一列数据这个时候也可以设置一些默认值。比如案例里面的 产品件数 。 mounted() {this.$nextTi…...

QT调节屏幕亮度

1、目标 利用QT实现调节屏幕亮度功能&#xff1a;在无屏幕无触控时&#xff0c;将屏幕亮度调低&#xff0c;若有触控则调到最亮。 2、调节亮度命令 目标装置使用嵌入式Linux系统&#xff0c;调节屏幕亮度的指令为&#xff1a; echo x > /sys/class/backlight/backlight/…...

实变函数精解【3】

文章目录 点集求导集 闭集参考文献 点集 求导集 例1 E { 1 / n 1 / m : n , m ∈ N } 1. lim ⁡ n → ∞ ( 1 / n 1 / m ) 1 / m 2. lim ⁡ n , m → ∞ ( 1 / n 1 / m ) 0 3. E ′ { 0 , 1 , 1 / 2 , 1 / 3 , . . . . } E\{1/n1/m:n,m \in N\} \\1.\lim_{n \rightar…...

JVM:SpringBoot TomcatEmbeddedWebappClassLoader

文章目录 一、介绍二、SpringBoot中TomcatEmbeddedWebappClassLoader与LaunchedURLClassLoader的关系 一、介绍 TomcatEmbeddedWebappClassLoader 是 Spring Boot 在其内嵌 Tomcat 容器中使用的一个类加载器&#xff08;ClassLoader&#xff09;。在 Spring Boot 应用中&#…...

蜂窝互联网接入:连接世界的无缝体验

通过Wi—Fi&#xff0c;人们可以方便地接入互联网&#xff0c;但无线局域网的覆盖范围通常只有10&#xff5e;100m。当我们携带笔记本电脑在外面四处移动时&#xff0c;并不是在所有地方都能找到可接入互联网的Wi—Fi热点&#xff0c;这时候蜂窝移动通信系统可以为我们提供广域…...

Sprint Boot 2 核心功能(一)

核心功能 1、配置文件 application.properties 同基础入门篇的application.properties用法一样 Spring Boot 2 入门基础 application.yaml&#xff08;或application.yml&#xff09; 基本语法 key: value&#xff1b;kv之间有空格大小写敏感使用缩进表示层级关系缩进不允…...

GitLab CI/CD实现项目自动化部署

1 GitLab CI/CD介绍 GitLab CI/CD 是 GitLab 中集成的一套用于软件开发的持续集成&#xff08;Continuous Integration&#xff09;、持续交付&#xff08;Continuous Delivery&#xff09;和持续部署&#xff08;Continuous Deployment&#xff09;工具。这套系统允许开发团队…...

阿里云调整全球布局关停澳洲云服务器,澳洲服务器市场如何选择稳定可靠的云服务?

近日&#xff0c;阿里云宣布将关停澳大利亚地域的数据中心服务&#xff0c;这一决定引发了全球云计算行业的广泛关注。作为阿里云的重要海外市场之一&#xff0c;澳洲的数据中心下架对于当地的企业和个人用户来说无疑是一个不小的挑战。那么&#xff0c;在阿里云调整全球布局的…...

排序(二)——快速排序(QuickSort)

欢迎来到繁星的CSDN&#xff0c;本期内容包括快速排序(QuickSort)的递归版本和非递归版本以及优化。 一、快速排序的来历 快速排序又称Hoare排序&#xff0c;由霍尔 (Sir Charles Antony Richard Hoare) &#xff0c;一位英国计算机科学家发明。霍尔本人是在发现冒泡排序不够快…...

<数据集>穿越火线cf人物识别数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;3440张 标注数量(xml文件个数)&#xff1a;3440 标注数量(txt文件个数)&#xff1a;3440 标注类别数&#xff1a;1 标注类别名称&#xff1a;[person] 使用标注工具&#xff1a;labelImg 标注规则&#xff1a;对…...

a+=1和a=a+1的区别

文章目录 a1 和a a1的区别一、实例代码二、代码解释三、总结 a1 和a a1的区别 一、实例代码 public class Test {public static void main(String[] args) {byte a 10; // a a 1; // a (byte) (a 1);a 1;System.out.println(a);} }上面的对变量a进行加一操作时&a…...

设计模式使用场景实现示例及优缺点(结构型模式——桥接模式)

结构型模式 桥接模式&#xff08;Bridge Pattern&#xff09; 桥接模式&#xff08;Bridge Pattern&#xff09;是一种结构型设计模式&#xff0c;其主要目的是“将抽象与实现解耦&#xff0c;使得两者可以独立地变化”。这种模式通过提供抽象化和实现化之间的桥接结构&#…...