当前位置: 首页 > news >正文

【扒代码】regression_head.py

import torch
from torch import nnclass UpsamplingLayer(nn.Module):# 初始化 UpsamplingLayer 类def __init__(self, in_channels, out_channels, leaky=True):super(UpsamplingLayer, self).__init__()  # 调用基类的初始化方法# 初始化一个序列模型,包含卷积层、激活函数和上采样操作self.layer = nn.Sequential(# 卷积层,用于特征图的卷积操作# in_channels 表示输入通道数,out_channels 表示输出通道数# kernel_size=3 表示卷积核大小为 3x3# padding=1 表示边缘填充,保持特征图尺寸不变nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),# 根据参数 leaky 决定使用 LeakyReLU 激活函数还是 ReLU 激活函数# LeakyReLU 在正输入值上与 ReLU 相同,但在负输入值上允许一个小的梯度(由 leaky 参数控制)nn.LeakyReLU() if leaky else nn.ReLU(),# 上采样层,使用双线性插值方法放大特征图# scale_factor=2 表示将特征图的尺寸放大两倍nn.UpsamplingBilinear2d(scale_factor=2))# 前向传播方法,将输入 x 通过定义好的层进行处理def forward(self, x):return self.layer(x)

功能解释

  • UpsamplingLayer 类接收三个参数:in_channels(输入通道数),out_channels(输出通道数),和 leaky(一个布尔值,决定是否使用 LeakyReLU 激活函数)。
  • 类初始化方法 __init__ 中,使用 nn.Sequential 创建了一个序列模型,它将按照顺序应用里面的层。
  • nn.Conv2d 是一个二维卷积层,用于在卷积神经网络中进行卷积操作。
  • nn.LeakyReLU 是一种激活函数,当输入为正时,它的行为与 nn.ReLU 相同,当输入为负时,它允许一个非零的梯度(由 leaky 参数控制)。
  • nn.UpsamplingBilinear2d 是一个上采样层,使用双线性插值方法来放大特征图的尺寸。
  • forward 方法定义了模型的前向传播,它接收输入 x,并通过 self.layer 中定义的层进行处理,然后返回处理后的结果。

整体而言,UpsamplingLayer 类实现了一个简单的上采样模块,它首先通过卷积层提取特征,然后应用激活函数,最后通过上采样层放大特征图,这在图像分割、特征细化等任务中非常有用。(这个上采样)

import torch
from torch import nn
from .upsamplinglayer import UpsamplingLayer  # 假设 UpsamplingLayer 在当前包中定义class DensityMapRegressor(nn.Module):# 初始化 DensityMapRegressor 类def __init__(self, in_channels, reduction):super(DensityMapRegressor, self).__init__()  # 调用基类的初始化方法# 根据 reduction 参数的不同,构建不同的回归器结构if reduction == 8:self.regressor = nn.Sequential(# 上采样层,将输入通道数 in_channels 上采样到 128UpsamplingLayer(in_channels, 128),# 继续上采样到 64UpsamplingLayer(128, 64),# 再上采样到 32UpsamplingLayer(64, 32),# 最后通过一个 1x1 卷积层将通道数减少到 1,生成密度图nn.Conv2d(32, 1, kernel_size=1),# 使用 LeakyReLU 激活函数nn.LeakyReLU())elif reduction == 16:self.regressor = nn.Sequential(# 与 reduction == 8 类似,但是最后多一个上采样步骤到 16UpsamplingLayer(in_channels, 128),UpsamplingLayer(128, 64),UpsamplingLayer(64, 32),UpsamplingLayer(32, 16),nn.Conv2d(16, 1, kernel_size=1),nn.LeakyReLU())# 初始化模型参数self.reset_parameters()# 前向传播方法,将输入 x 通过回归器处理def forward(self, x):return self.regressor(x)# 参数重置方法,使用特定的初始化方法初始化模型的权重和偏置def reset_parameters(self):for module in self.modules():  # 遍历模型中所有的模块if isinstance(module, nn.Conv2d):  # 如果模块是二维卷积层# 初始化权重为标准正态分布nn.init.normal_(module.weight, std=0.01)# 如果存在偏置项,则初始化为常数 0if module.bias is not None:nn.init.constant_(module.bias, 0)

功能解释

  • DensityMapRegressor 类用于生成对象计数的密度图,它根据输入的特征图和指定的 reduction 参数来构建一个回归器网络。
  • in_channels 参数指定了输入特征图的通道数。
  • reduction 参数控制了网络中上采样层的数量和最终生成的密度图的分辨率。
  • self.regressor 是一个序列模型,根据 reduction 参数的值,它将构建不同数量的上采样层,最后通过一个 1x1 卷积层输出通道数为 1 的密度图。
  • forward 方法定义了模型的前向传播逻辑,它接收输入 x,并通过 self.regressor 进行处理,返回处理后的密度图。
  • reset_parameters 方法用于初始化模型的参数,这里使用正态分布初始化权重,偏置初始化为常数 0。这是为了在训练开始前给模型一个合理的初始状态。

整体而言,DensityMapRegressor 类实现了一个用于生成密度图的回归网络,它通过一系列上采样层逐步放大特征图的尺寸,并最终生成一个通道数为 1 的密度图,这个密度图可以用于表示图像中对象的分布密度。

什么是上采样?

上采样(Upsampling)是深度学习和计算机视觉中常用的一种技术,用于增加数据的空间分辨率,即增加图像的高度和宽度。上采样通常在特征图(feature maps)经过一系列卷积层后应用,以便恢复图像的空间尺寸或为后续的网络层提供合适尺寸的输入。

上采样的常见方法包括:

  1. 最近邻插值(Nearest Neighbor Interpolation)

    • 这是最简单的上采样方法,通过选择距离最近的像素点的值来填充新像素点。
  2. 双线性插值(Bilinear Interpolation)

    • 这种方法考虑了新像素点周围四个最近像素点的值,并通过线性方式进行插值。
  3. 双三次插值(Bicubic Interpolation)

    • 类似于双线性插值,但使用了更高阶的多项式来提供平滑的插值效果。
  4. 转置卷积(Transposed Convolution)

    • 也称为反卷积,通过卷积操作来增加图像的空间尺寸,同时学习如何填充新像素点的值。
  5. 像素 Shuffle(Pixel Shuffle)

    • 通过重新排列像素来增加图像的分辨率,通常与子像素卷积一起使用。

在这个例子中,新像素点的值是通过考虑周围现有像素点的值并进行加权平均得到的。

上采样在许多深度学习任务中都非常有用,例如在语义分割任务中恢复图像分辨率,或者在生成对抗网络(GANs)中生成高分辨率的图像。通过上采样,模型能够生成更精细的特征表示,有助于提高任务的性能。

相关文章:

【扒代码】regression_head.py

import torch from torch import nnclass UpsamplingLayer(nn.Module):# 初始化 UpsamplingLayer 类def __init__(self, in_channels, out_channels, leakyTrue):super(UpsamplingLayer, self).__init__() # 调用基类的初始化方法# 初始化一个序列模型,包含卷积层、…...

vue2 使用axios 请求后台返回文件流导出为excel

目录 步骤 1: 安装 Axios 步骤 2: 创建 Axios 实例 步骤 3: 发起请求并处理文件流 说明 步骤 1: 安装 Axios 首先,确保项目中已经安装了 Axios。如果没有,可以通过以下命令进行安装: npm install axios 步骤 2: 创建 Axios 实例 为了更…...

MATLAB数据可视化:在地图上画京沪线的城市连线

matlab自带的geoplot(lat,lon) 可以在地理坐标中绘制线条。使用 lat和lon分别指定以度为单位的经度和纬度坐标。 绘制京沪线所经城市线条: citys [116.350009,39.853928; 116.683546,39.538304; 117.201509,39.085318; 116.838715,38.304676;...116.359244,37.436…...

【AI】CV基础1

定期更新,建议关注更新收藏。 本站友情链接: OCR篇1 可变形卷积Deformable Conv opencv-python形态学操作合集 目录 仿射变换图像二阶导数本质探讨PIL通道、模式、尺寸、坐标系统、调色板、信息滤波器实现图像格式转换 OpenCV轮廓提取 仿射变换 仿射变换…...

数据结构《栈》

数据结构《栈》 1、栈的概念及结构2、栈的实现3、练习: 1、栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO&…...

说一说mysql的having?和where有什么区别?

在 MySQL 中,HAVING 子句和 WHERE 子句都是用于过滤查询结果的,但它们之间有一些重要的区别。下面我将详细介绍这两个子句的区别以及它们的使用场景。 1. HAVING 子句 作用: HAVING 子句用于过滤聚合后的结果集。它通常与 GROUP BY 子句一起使用&#x…...

LeetCode45. 跳跃游戏 II

题目链接: 45. 跳跃游戏 II - 力扣(LeetCode) 思路分析:这属于上一题的变种,思路有所不同,要用到贪心的思想。从第一步开始,在可以跳跃的范围内,选择能够到达最远位置的点将其作为…...

算法打卡 Day19(二叉树)-平衡二叉树 + 二叉树的所有路径 + 左叶子之和 + 完全二叉树的节点个数

Leetcode 101-平衡二叉树 文章目录 Leetcode 101-平衡二叉树题目描述解题思路 Leetcode 257-二叉树的所有路径题目描述解题思路 Leetcode 404-左叶子之和题目描述解题思路 Leetcode 222-完全二叉树的节点个数题目描述解题思路 题目描述 https://leetcode.cn/problems/balanced…...

国际以太网专线 (IEPL)/国际专线(IPLC)-全球覆盖,无界沟通

中国联通国际公司产品:国际以太网专线 (IEPL)/国际专线(IPLC)—— 跨境数据传输的坚实桥梁 在全球化日益加深的今天,跨境、跨地域的数据传输需求激增,企业对数据传输的速度、安全性和稳定性提出了前所未有的高要求。中…...

信息安全管理知识体系攻略(至简)

信息安全管理知识体系主要包括信息安全管理体系、信息安全策略、信息安全系统、信息安全技术体系等。 一、信息安全管理 1、信息安全管理体系(ISMS)。ISO27001是国际标准化组织(ISO)和国际电工委员会(ICE&#xff09…...

HCIE学习笔记:IPV6 地址、ICMP V6、NDP 、DAD (更新补充中)

系列文章目录 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、IPV4、IPv6包头对比1. IPV4包头2.IPv6包头3.IPV6扩展包头 二、IPV6基础知识地址结构、地址分类三、ICMPV4、ICMPV61、 lnternet控…...

人工智能】Transformers之Pipeline(九):物体检测(object-detection)

目录​​​​​​​ 一、引言 二、物体检测(object-detection) 2.1 概述 2.2 技术原理 2.3 应用场景 2.4 pipeline参数 2.4.1 pipeline对象实例化参数 2.4.2 pipeline对象使用参数 2.4 pipeline实战 2.5 模型排名 三、总结 一、引言 pipel…...

[SWPUCTF 2021 新生赛]easy_md5

分析代码:1.包含flag2.php 2.GET传name,POST传password $name ! $password && md5($name) md5($password) 属于MD5绕过中的php 弱类型绕过 解题方法: 方法一 import requests# 网站的URL url "http://node7.anna.nssctf.cn:28026&q…...

Redis面试题大全

文章目录 Redis有哪几种基本类型Redis为什么快?为什么Redis6.0后改用多线程?什么是热key吗?热key问题怎么解决?什么是热Key?解决热Key问题的方法 什么是缓存击穿、缓存穿透、缓存雪崩?缓存击穿缓存穿透缓存雪崩 Redis…...

【langchain学习】BM25Retriever和FaissRetriever组合 实现EnsembleRetriever混合检索器的实践

展示如何使用 LangChain 的 EnsembleRetriever 组合 BM25 和 FAISS 两种检索方法,从而在检索过程中结合关键词匹配和语义相似性搜索的优势。通过这种组合,我们能够在查询时获得更全面的结果。 1. 导入必要的库和模块 首先,我们需要导入所需…...

【C语言】预处理详解(上)

文章目录 前言1. 预定义符号2. #define 定义常量3. #define定义宏4. 带有副作用的宏参数5. 宏替换的规则 前言 在讲解编译和链接的知识点中,我提到过翻译环境中主要由编译和链接两大部分所组成。 其中,编译又包括了预处理、编译和汇编。当时&#xff0c…...

uni-app内置组件(基本内容,表单组件)()二

文章目录 一、 基础内容1.icon 图标2.text3.rich-text4.progress 二、表单组件1.button2.checkbox-group和checkbox3.editor 组件4.form5.input6.label7.picker8.picker-view 和 picker-view-column9.radio-group 和 radio10.slider11.switch12.textarea 一、 基础内容 1.icon…...

linux搭建redis超详细

1、下载redis包 链接: https://download.redis.io/releases/ 我以7.0.11为例 2、上传解压 mkdir /usr/local/redis tar -zxvf redis-7.0.11.tar.gz3、进入redis-7.0.11,依次执行 makemake install4、修改配置文件redis.conf vim redis.conf为了能够远程连接redis…...

Flink-DataWorks第二部分:数据集成(第58天)

系列文章目录 数据集成 2.1 概述 2.1.1 离线(批量)同步简介 2.1.2 实时同步简介 2.1.3 全增量同步任务简介 2.2 支持的数据源及同步方案 2.3 创建和管理数据源 文章目录 系列文章目录前言2. 数据集成2.1 概述2.1.1 离线(批量)同步…...

4个从阿里毕业的P7打工人,当起了包子铺的老板

吉祥知识星球http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247483727&idx1&sndb05d8c1115a4539716eddd9fde4e5c9&chksmc0e47813f793f105017fb8551c9b996dc7782987e19efb166ab665f44ca6d900210e6c4c0281&scene21#wechat_redirect 《网安面试指南》h…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...

32位寻址与64位寻址

32位寻址与64位寻址 32位寻址是什么? 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元(地址),其核心含义与能力如下: 1. 核心定义 地址位宽:CPU或内存控制器用32位…...