深度学习基础—残差网络ResNets
1.残差网络结构
当网络训练的很深很深的时候,效果是否会很好?在这篇论文中,作者给出了答案:Deep Residual Learning for Image Recognition
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

实际证明,越深的网络效果可能没有规模小的网络好。这是由于网络训练的很深的时候,会出现梯度消失或梯度爆炸的情况,网络难以训练,从而产生退化问题。而残差网络可以解决这个问题,帮助训练层数较多的网络。
(1)残差块

对于网络的一层,原本的操作是先进行权重参数的线性组合,在进行激活函数的计算。而残差块直接将某一层的输出值转移到其后某层的激活函数计算前,即激活函数计算前将(上一层的输出+转移的值)一起作为输入。
我们来推导一下计算公式,还以上图为例,假设当前的输入x为a[l],则经过l+1层的线性组合后变成:
![]()
经过l+1层的Relu激活函数后变为:

经过l+2层的线性组合后变为:

此时,激活函数计算前应该加上a[l],经过l+2层的线性组合后变为:
![]()
这就是一个残差块,由残差块组成的网络就是残差网络。残差又称为跳跃连接。
注意:这只是在普通网络实现残差块,在文章开头的链接中,是在卷积神经网络中实现残差神经网络的,如下:

最右侧的网络就是残差网络的作者实现34层残差网络,每两层卷积层作为一个残差层(池化层不含参数,不计入层数)。
(2)残差块的意义
将上述推导的公式展开:
![]()
当进行L2正则化或者权重衰减,参数的值会被压缩,W[l+2]和b[l+2]的值就可能接近0。假设W[l+2]和b[l+2]的值为0,此时进行Relu激活函数后a[l+2]=a[l]。也就是恒等式,经验表明网络学习一个恒等式很容易,说明增加残差块对网络的表现几乎没有影响。
但是,我们的目的是让网络有更好的表现,如果残差块的神经元学习到一些有用的信息,就会为网络带来更好的表现。因此残差块的意义就是:保证网络表现不会更低的情况下,寻找更优的网络结构。
2.注意事项
可能有人会注意到,a[l]直接转移到某一层激活函数前,万一维度不一致无法计算怎么办?
实际上残差网络使用了许多same卷积,因此可以保证残差块计算的维度一致。但如果出现了维度不一致,可以进行如下操作:
![]()
在a[l]前进行一次矩阵运算,保证Wsa[l]的输出维度和要运算的上一层输出维度一致,比如z[l+2]是256大小的向量,而a[l]的大小是128,就可以把Ws的大小固定为256*128,此时维度就保证了一致,然后把Ws作为参数进行学习。
也可以扩充a[l]的大小,进行padding操作,用0填充。
相关文章:
深度学习基础—残差网络ResNets
1.残差网络结构 当网络训练的很深很深的时候,效果是否会很好?在这篇论文中,作者给出了答案:Deep Residual Learning for Image Recognitionhttps://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_…...
鸿蒙ArkUI实战开发-主打自研语言及框架
ArkUI 是 HarmonyOS 的声明式 UI 开发框架,而 ArkUI-X 是基于 ArkUI 框架扩展而来的跨平台开发框架。ArkUI-X 支持 HarmonyOS、OpenHarmony、Android 和 iOS 平台,允许开发者使用一套代码构建支持多平台的应用程序。 一、ArkUI-X 的实战开发步骤 在实战开…...
HDU Sit sit sit (区间DP+组合数)
题目大意:有 n 张椅子,n 个人,所有人都可以按照任意顺序坐在任意一张椅子上,但是同时满足这三种情况的椅子不能坐: 1.椅子上有左右两张相邻的椅子。 2.左右相邻的椅子不是空的。 3.左右相邻的椅子颜色不同。 如果当前学…...
Qt开发技巧(十四)文字的分散对齐,设置动态库路径,进度条控件的文本,文件对话框的卡顿,滑块控件的进度颜色,停靠窗体的排列,拖拽事件的坑
继续讲一些Qt开发中的技巧操作: 1.文字的分散对齐 有时候需要对文本进行分散对齐显示,相当于无论文字多少,尽可能占满整个空间平摊占位宽度,但是在对支持对齐方式的控件比如QLabel调用 setAlignment(Qt::AlignJustify | Qt::Align…...
VirtulBOX Ubuntu22安装dpdk23.11
目录 依赖包安装 Python安装 numa安装 编辑Python pip3安装 编辑pyelftools安装 meson和ninja安装 编辑构建与编译 Meson构建DPDK 编辑Ninja安装DPDK 编辑VFIO-PCI驱动安装 大页内存和IOMMU配置 编辑VFIO-PCI加载 编辑VFIO-PCI驱动绑定 编辑dpdk…...
线性代数书中求解齐次线性方程组、非齐次线性方程组方法的特点和缺陷(附实例讲解)
目录 一、克拉默法则 1. 方法概述 2. 例16(1) P45 3. 特点 (1) 只适用于系数矩阵是方阵 (2) 只适用于行列式非零 (3) 只适用于唯一解的情况 (4) 只适用于非齐次线性方程组 二、逆矩阵 1. 方法概述 2. 例16(2) P45 3. 特点 (1) 只适用于系数矩阵必须是方阵且可逆 …...
初识算法 · 双指针(2)
目录 前言: 盛最多水的容器 题目解析: 算法原理: 算法编写: 有效三角形的个数 题目解析: 算法原理: 算法编写: 前言: 本文介绍两个题目,盛最多水的容器和有效三…...
React常见面试题目
React常见面试题目详解包括以下几个方面: 1. 对React的理解及特性 定义与用途:React是一个用于构建用户界面的JavaScript库,它遵循组件设计模式、声明式编程范式和函数式编程概念,使得前端应用程序更高效。 核心特性: …...
图解网络OSI模型与TCP/IP
一、OSI模型与TCP/IP 1、OSI模型 OSI/RM(Open System Interconnection,开放系统互联参考模型)是由ISO(国际标准组织)创建的一个有助于开放和理解计算机的通信模型,OSI七层参考模型作为一套规范的标准&…...
15分钟学 Python 第31天 :Web Scraping
Day 31:Web Scraping 1. Web Scraping 概述 Web Scraping(网页抓取)是一种自动提取网站数据的技术。它常用于从网页中收集信息,对数据进行分析和处理。无论是获取产品价格、市场调研,还是收集新闻信息,We…...
前端编程艺术(2)----CSS
目录 1.CSS 2.CSS引入 3.选择器 1.标签选择器 2.类选择器 3.id选择器 4.属性选择器 5.后代选择器 5.直接子元素选择器 6.伪类选择器 链接相关 动态伪类 结构化伪类 否定伪类 其他伪类 UI元素状态伪类 4.字体 1.font-family 2.font-size 3.font-style 4.fo…...
前端的全栈混合之路Meteor篇(二):RPC方法注册及调用
在Meteor 3.0中,RPC(远程过程调用)机制是实现前后端数据交互的重要特性。通过RPC,前端可以轻松调用后端方法(Methods)并获取数据,而后端的逻辑也可以同步或异步执行并返回结果。本文将详细介绍M…...
重学SpringBoot3-集成Redis(三)之注解缓存策略设置
更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-集成Redis(三)之注解缓存策略设置 1. 引入 Redis 依赖2. 配置 RedisCacheManager 及自定义过期策略2.1 示例代码:自定…...
【C++11】新特性
前言: C11 是C编程语言的一个重要版本,于2011年发布。它带来了数量可观的变化,包含约 140 个新特性,以及对 C03 标准中约600个缺陷的修正,更像是从 C98/03 中孕育出的新语言 列表初始化 C11 中的列表初始化࿰…...
【游戏模组】重返德军总部2009高清重置MOD,建模和材质全部重置,并且支持光追效果,游戏画质大提升
各位好,今天小编给大家带来一款新的高清重置MOD,本次高清重置的游戏叫《重返德军总部2009》2009年发布,我相信很多玩家已经玩过了,如果你还没有玩过我也可以和你简单介绍一下剧情,这款游戏故事背景接续在《重返德军总部…...
CGLib动态代理和JDK动态代理Demo、ASM技术尝鲜
本文主要介绍CGLib和JDK动态代理的使用,不对源码进行深入分析。代码可直接复制使用。 类型 机制 回调方式 适用场景 效率 JDK动态代理 委托机制。代理类和目标类都实现了同样的接口。InvocationHandler持有目标类。代理类委托InvocationHandler去调用目标类原…...
[C++]使用纯opencv部署yolov11-pose姿态估计onnx模型
【算法介绍】 使用纯OpenCV部署YOLOv11-Pose姿态估计ONNX模型是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标&#x…...
python you-get下载视频
You-Get是一个使用Python开发的命令行工具,用于下载网络上的音视频资源。你可以通过pip安装You-Get,具体操作如下: 打开命令行工具,输入pip install you-get,然后回车执行命令 You-Get还允许你指定下载的视频格式和质…...
SCUC博客摘录「 储能参与电能市场联合出清:SCUC和SCED模型应用于辅助服务调频市场(IEEE39节点系统)」2024年10月6日
2.1 SCUC模型在本方法中,首先利用SCUC模型确定机组出力计划和储能充放电计划。SCUC模型是电力系统经济调度的重要工具,通过优化发电机组出力计划和调度,实现电力系统的经济性和可靠性。在考虑储能的情况下,SCUC模型需要考虑储能的…...
Git分支-团队协作以及GitHub操作
Git分支操作 在版本控制过程中,同时推进多个任务> 程序员开发与开发主线并行,互不影响 分支底层也是指针的引用 hot-fix:相当于若在进行分支合并后程序出现了bug和卡顿等现象,通过热补丁来进行程序的更新,确保程序正常运行 常…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
