基于Python的自然语言处理系列(32):spaCy属性扩展
1. 介绍
在 spaCy 中,自定义扩展属性让我们能够为 Doc、Token 和 Span 对象添加元数据。通过这些扩展属性,开发者可以根据需要存储额外的上下文信息,或者动态计算属性值。
自定义属性通过点下划线(dot-underscore)属性访问,例如 token._.is_color。这种命名方式确保这些属性是由用户自定义添加的,而不是 spaCy 内置的属性。扩展属性可以是静态的,或者通过动态计算获得其值。
为了让扩展属性在 Doc、Token 或 Span 上使用,必须通过 set_extension 方法进行注册。下面我们将探讨如何使用和定义这些扩展属性。
2. 自定义扩展属性的类型
扩展属性有三种类型:
- 属性扩展(Attribute extensions):设置默认值,可以覆盖。
- 属性方法扩展(Property extensions):通过 getter 和可选的 setter 定义动态计算属性。
- 方法扩展(Method extensions):将函数作为方法注册,可以传递参数并动态计算属性值。
3. 属性扩展
属性扩展用于为自定义属性设置默认值,并允许在需要时覆盖它。例如,下面的代码为 Token 对象定义了一个 is_color 属性,默认值为 False,但可以为特定的 token 手动设置为 True。
import spacy
from spacy.tokens import Token# 创建空白模型
nlp = spacy.blank("en")# 为 Token 设置扩展属性,默认值为 False
Token.set_extension('is_color', default=False, f相关文章:
基于Python的自然语言处理系列(32):spaCy属性扩展
1. 介绍 在 spaCy 中,自定义扩展属性让我们能够为 Doc、Token 和 Span 对象添加元数据。通过这些扩展属性,开发者可以根据需要存储额外的上下文信息,或者动态计算属性值。 自定义属性通过点下划线(dot-underscore)属性访问,例如 token._.is_color。这种命名方式确保这些属…...
STM32 输入捕获模式详解:PWM 输入捕获与 PWI 模式(续篇)
在前两篇文章中,我们探讨了 STM32 输入捕获的基础和 PWI 模式的工作原理,特别是定时器的两个通道如何协同工作以捕获 PWM 信号。本文将进一步结合 STM32 标准库函数中的 TIM_PWMIConfig(),来讲解如何通过库函数配置定时器实现 PWI 模式。 我…...
【C++】set/map(重点解析)
目录 一、关联式容器和序列式容器 二、C中的键值对——pair 1.概念 2.定义 3.构造pair 三.set 1.construct构造 2.iterator迭代器 3.insert插入 4.erase删除 5.find查找 6.lower_bound和upper_bound 7.count 四.multiset 五.map 1.insert 2.operator[] 一、…...
【算法篇】动态规划类(1)(笔记)
目录 一、理论基础 1. 大纲 2. 动态规划的解题步骤 二、LeetCode 题目 1. 斐波那契数 2. 爬楼梯 3. 使用最小花费爬楼梯 4. 不同路径 5. 不同路径 II 6. 整数拆分 7. 不同的二叉搜索树 一、理论基础 1. 大纲 动态规划,英文:Dynamic Programm…...
mysql学习教程,从入门到精通,SQL 约束(Constraints)(41)
在数据库设计中,约束(Constraints)用于确保数据的准确性和完整性。它们通过限制可以插入到数据库表中的数据类型来防止无效数据。SQL 中有几种常见的约束类型,包括主键约束(Primary Key)、外键约束…...
使用CSS3与JavaScript实现炫酷的3D旋转魔方及九宫格交换动效
文章目录 前言一、项目需求背景二、CSS3 3D基础知识介绍2.1 什么是CSS3 3D?2.2 主要使用的CSS属性 三、使用HTML和CSS搭建魔方结构四、让魔方动起来:CSS3动画五、九宫格数字交换的JavaScript实现5.1 九宫格布局5.2 随机交换数字 六、随机交换与相邻格子的…...
springboot项目通过maven的profile功能实现通过不同文件夹的方式来组织不同环境配置文件
写在前面 本文看下springboot项目如何通过文件夹的方式来组织不同环境配置文件。 1:正文 一般的我们写springboot项目时配置文件是这个样子的: appliction.yaml --> 通过spring.profiles.activexxx来激活某个指定后缀的配置文件 application-evn1…...
GAN(Generative Adversarial Nets)
GAN(Generative Adversarial Nets) 引言 GAN由Ian J. Goodfellow等人提出,是Ian J. Goodfellow的代表作之一,他还出版了大家耳熟能详的花书(Deep Learning深度学习),GAN主要的思想是同时训练两个模型,生成…...
linux下使用mpi求自然数和
搭建MPI并行计算环境,编写 MPI程序,求和 1 23....1 0000。 要求: 1.使用100个进程; 2.进程0计算1 2...100, 进程1计算101 102... 200, ..... 进程99计算9901 9902... 10000; 3.调用计时函数,分别输出每个进程的计算时间; 4.需使用MPI集群通信函数和同…...
WebGl学习使用attribute变量绘制一个水平移动的点
在WebGL编程中,attribute变量是一种特殊类型的变量,用于从客户端传递数据到顶点着色器。这些数据通常包括顶点的位置、颜色、纹理坐标等,它们是与每个顶点直接相关的信息。attribute变量在顶点着色器中声明,并且对于每个顶点来说都…...
机器学习四大框架详解及实战应用:PyTorch、TensorFlow、Keras、Scikit-learn
目录 框架概述PyTorch:灵活性与研究首选TensorFlow:谷歌加持的强大生态系统Keras:简洁明了的高层 APIScikit-learn:传统机器学习的必备工具实战案例 图像分类实战自然语言处理实战回归问题实战 各框架的对比总结选择合适的框架 1…...
linux源码安装slurm以及mung和openssl
一、源码安装munge 1、编译安装munge (1)下载munge地址:https://github.com/dun/munge/releases (2)解压编译安装: 1 2 3 4 5 6 7 8 创建/data目录 复制文件munge-0.5.15.tar.xz 到/data目录下 tar -Jx…...
分享蓝牙耳机A2DP音频卡顿原因及解决思路
背景 最近一直在更新博客,我觉得写博客有三个好处,一是很多东西时间久了就会忘,记下来方便自己以后回忆和总结,二是记下来可以加深自己对知识的理解,三是可以知识分享,方便他人。 言归正传,今天…...
Mac 下编译 libaom 源码教程
AV1 AV1是一种开放、免版税的视频编码格式,由开放媒体联盟(AOMedia)开发,旨在提供高压缩效率和优秀的视频质量。AV1支持多种分辨率,包括SD、HD、4K和8K,并适用于视频点播(VOD)、直播…...
【成品设计】基于Arduino平台的物联网智能灯
《基于Arduino平台的物联网智能灯》 整体功能: 这个任务中要求实现一个物联网智能灯。实际测试环境中要求设备能够自己创建一个热点,连接这个热点后能自动弹出控制界面(强制门户)。 功能点 基础功能 (60分) 要求作品至少有2个灯…...
安装和配置k8s可视化UI界面dashboard-1.20.6
安装和配置k8s可视化UI界面dashboard-1.20.6 1.环境规划2.初始化服务器1)配置主机名2)设置IP为静态IP3)关闭selinux4)配置主机hosts文件5)配置服务器之间免密登录6)关闭交换分区swap,提升性能7&…...
VLAN:虚拟局域网
VLAN:虚拟局域网 交换机和路由器协同工作后,将原先的一个广播域,逻辑上,切分为多个广播域。 第一步:创建VLAN [SW1]dispaly vlan 查询vlan VID(VLAN ID):用来区分和标定不同的vlan 由12位二进制构成 范围: 0-4…...
利用可解释性技术增强制造质量预测模型
概述 论文地址:https://arxiv.org/abs/2403.18731 本研究提出了一种利用可解释性技术提高机器学习(ML)模型性能的方法。该方法已用于铣削质量预测,这一过程首先训练 ML 模型,然后使用可解释性技术识别不需要的特征并去…...
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling 摘要:引言:背景3 flexMatch3.1 Curriculum Pseudo Labeling3.2 阈值预热3.3非线性映射函数实验4.1 主要结果4.2 ImageNet上的结果4.3收敛速度加速4.4 消融研究5 相关工作摘要: 最近提出的Fi…...
Spring Cloud 3.x 集成eureka快速入门Demo
1.什么是eureka? Eureka 由 Netflix 开发,是一种基于REST(Representational State Transfer)的服务,用于定位服务(服务注册与发现),以实现中间层服务的负载均衡和故障转移ÿ…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
Java数组Arrays操作全攻略
Arrays类的概述 Java中的Arrays类位于java.util包中,提供了一系列静态方法用于操作数组(如排序、搜索、填充、比较等)。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序(sort) 对数组进行升序…...
鸿蒙Navigation路由导航-基本使用介绍
1. Navigation介绍 Navigation组件是路由导航的根视图容器,一般作为Page页面的根容器使用,其内部默认包含了标题栏、内容区和工具栏,其中内容区默认首页显示导航内容(Navigation的子组件)或非首页显示(Nav…...
Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用
Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用 Linux 内核内存管理是构成整个内核性能和系统稳定性的基础,但这一子系统结构复杂,常常有设置失败、性能展示不良、OOM 杀进程等问题。要分析这些问题,需要一套工具化、…...
以太网PHY布局布线指南
1. 简介 对于以太网布局布线遵循以下准则很重要,因为这将有助于减少信号发射,最大程度地减少噪声,确保器件作用,最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确,然…...
