《Effects of Graph Convolutions in Multi-layer Networks》阅读笔记
一.文章概述
本文研究了在XOR-CSBM数据模型的多层网络的第一层以上时,图卷积能力的基本极限,并为它们在数据中信号的不同状态下的性能提供了理论保证。在合成数据和真实世界数据上的实验表明a.卷积的数量是决定网络性能的一个更重要的因素,而不是网络中的层的数量。b.只要放置相同数量的卷积层,只要不在第一层,任何放置组合能实现相似的性能增强。c.当图相对稀疏的时候,多个图卷积是有利的。
注意,本文研究的重点是比较图卷积与不利用关系信息的传统MLP的优点和局限性。作者的设置不受异配性问题的影响,且不考虑过平滑发生的情况。
二.预备知识
数据模型
令 n n n表示数据点的数量, d d d表示特征维度。定义伯努利随机变量 ε 1 , … , ε n ∼ Ber ( 1 / 2 ) \varepsilon_1, \ldots, \varepsilon_n \sim \operatorname{Ber}(1 / 2) ε1,…,εn∼Ber(1/2)和 η 1 , … , η n ∼ Ber ( 1 / 2 ) \eta_1, \ldots, \eta_n \sim \operatorname{Ber}(1 / 2) η1,…,ηn∼Ber(1/2)。定义两个类别 C b = { i ∈ [ n ] ∣ ε i = b } C_b=\left\{i \in[n] \mid \varepsilon_i=b\right\} Cb={i∈[n]∣εi=b},其中 b ∈ { 0 , 1 } b \in\{0,1\} b∈{0,1}。
令 μ \boldsymbol{\mu} μ和 ν \boldsymbol{\nu} ν表示 R d \mathbb{R}^d Rd中的固定向量,其满足 ∥ μ ∥ 2 = ∥ ν ∥ 2 \|\boldsymbol{\mu}\|_2=\|\boldsymbol{\nu}\|_2 ∥μ∥2=∥ν∥2 和 ⟨ μ , ν ⟩ = 0 \langle\boldsymbol{\mu}, \boldsymbol{\nu}\rangle=0 ⟨μ,ν⟩=0(即 μ \boldsymbol{\mu} μ和 ν \boldsymbol{\nu} ν正交)。令 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} X∈Rn×d为数据矩阵,其中每行 X i ∈ R d \mathbf{X}_i \in \mathbb{R}^d Xi∈Rd是一个独立的高斯随机向量分布 X i ∼ N ( ( 2 η i − 1 ) ( ( 1 − ε i ) μ + ε i ν ) , σ 2 ) \mathbf{X}_i \sim \mathcal{N}\left(\left(2 \eta_i-1\right)\left(\left(1-\varepsilon_i\right) \boldsymbol{\mu}+\varepsilon_i \boldsymbol{\nu}\right), \sigma^2\right) Xi∼N((2ηi−1)((1−εi)μ+εiν),σ2)。用 X ∼ XOR − GMM ( n , d , μ , ν , σ 2 ) \mathbf{X} \sim \operatorname{XOR}-\operatorname{GMM}\left(n, d, \boldsymbol{\mu}, \boldsymbol{\nu}, \sigma^2\right) X∼XOR−GMM(n,d,μ,ν,σ2)表示从该数据模型中采样的数据。
令 A = ( a i j ) i , j ∈ [ n ] \mathbf{A}=\left(a_{i j}\right)_{i, j \in[n]} A=(aij)i,j∈[n]表示对应于图(含自环的无向图)信息的邻接矩阵,该矩阵是从一个标准的对称双块随机块模型(symmetric two-block stochastic block model)中采样的,该模块的参数为 p p p和 q q q,其中 p p p表示块内边概率, q q q表示块间边概率。作者将 SBM ( n , p , q ) \operatorname{SBM}(n, p, q) SBM(n,p,q)与 XOR − GMM ( n , d , μ , ν , σ 2 ) \operatorname{XOR}-\operatorname{GMM}\left(n, d, \boldsymbol{\mu}, \boldsymbol{\nu}, \sigma^2\right) XOR−GMM(n,d,μ,ν,σ2)耦合在一起,即若 ε i = ε j \varepsilon_i=\varepsilon_j εi=εj,则 a i j ∼ Ber ( p ) a_{i j} \sim \operatorname{Ber}(p) aij∼Ber(p),否则 a i j ∼ Ber ( q ) a_{i j} \sim \operatorname{Ber}(q) aij∼Ber(q)。
至此,可得定义的数据模型 ( A , X ) = ( { a i j } i , j ∈ [ n ] , { X i } i ∈ [ n ] ) (\mathbf{A}, \mathbf{X})=\left(\left\{a_{i j}\right\}_{i, j \in[n]},\left\{\mathbf{X}_i\right\}_{i \in[n]}\right) (A,X)=({aij}i,j∈[n],{Xi}i∈[n]),即 ( A , X ) ∼ XOR − CSBM ( n , d , μ , ν , σ 2 , p , q ) (\mathbf{A}, \mathbf{X}) \sim \operatorname{XOR}-\operatorname{CSBM}\left(n, d, \boldsymbol{\mu}, \boldsymbol{\nu}, \sigma^2, p, q\right) (A,X)∼XOR−CSBM(n,d,μ,ν,σ2,p,q)。
令 D \mathbf{D} D表示邻接矩阵对应的度矩阵, N i = { j ∈ [ n ] ∣ a i j = 1 } N_i=\left\{j \in[n] \mid a_{i j}=1\right\} Ni={j∈[n]∣aij=1}表示节点 i i i的邻居集。
网络架构
作者的分析聚焦于带ReLU激活的MLP架构, L L L层网络定义如下:
H ( 0 ) = X f ( l ) ( X ) = ( D − 1 A ) k l H ( l − 1 ) W ( l ) + b ( l ) H ( l ) = ReLU ( f ( l ) ( X ) ) y ^ = φ ( f ( L ) ( X ) ) . \begin{aligned} & \mathbf{H}^{(0)}=\mathbf{X} \\ & f^{(l)}(\mathbf{X})=\left(\mathbf{D}^{-1} \mathbf{A}\right)^{k_l} \mathbf{H}^{(l-1)} \mathbf{W}^{(l)}+\mathbf{b}^{(l)} \\ & \mathbf{H}^{(l)}=\operatorname{ReLU}\left(f^{(l)}(\mathbf{X})\right) \\ & \hat{\mathbf{y}}=\varphi\left(f^{(L)}(\mathbf{X})\right) . \end{aligned} H(0)=Xf(l)(X)=(D−1A)klH(l−1)W(l)+b(l)H(l)=ReLU(f(l)(X))y^=φ(f(L)(X)).
其中 l ∈ [ L ] l \in [L] l∈[L], φ ( x ) = sigmoid ( x ) = \varphi(x)=\operatorname{sigmoid}(x)= φ(x)=sigmoid(x)= 1 1 + e − x \frac{1}{1+e^{-x}} 1+e−x1,最后一层的输出表示为 y ^ = { y ^ i } i ∈ [ n ] \hat{\mathbf{y}}=\left\{\hat{y}_i\right\}_{i \in[n]} y^={y^i}i∈[n]。 D − 1 A \mathbf{D}^{-1} \mathbf{A} D−1A表示正则化的邻接矩阵, k l k_l kl表示层 l l l中的图卷积数量。对于给定数据集 ( X , y ) (\mathbf{X}, \mathbf{y}) (X,y),采用二进制交叉熵来进行优化:
ℓ θ ( A , X ) = − 1 n ∑ i ∈ [ n ] y i log ( y ^ i ) + ( 1 − y i ) log ( 1 − y ^ i ) \ell_\theta(\mathbf{A}, \mathbf{X})=-\frac{1}{n} \sum_{i \in[n]} y_i \log \left(\hat{y}_i\right)+\left(1-y_i\right) \log \left(1-\hat{y}_i\right) ℓθ(A,X)=−n1i∈[n]∑yilog(y^i)+(1−yi)log(1−y^i)
三.理论分析结果
设置Baselines
作者设置了一个没有图信息的对比baseline。作者用用混合模型的均值与数据点数 n n n之间的距离来表征XOR-GMM数据模型的分类阈值。令 Φ ( ⋅ ) \Phi(\cdot) Φ(⋅) 表示标准高斯的累积分布函数。
重要结论:若两个类的特征均值相距不超过 O ( σ ) O(\sigma) O(σ),那么在压倒性的概率下,有常数比例的点被错误分类。
通过图卷积进行改进
本节阐述了图卷积在多层卷积中的影响。
重要结论:多层模型中将图卷积放置在第一层会损害分类精度,下图(a)展示的的便是第一层中没有图卷积的网络,可见不同类别的数据并不是线性可分的,对其进行图卷积后,两个类的均值会坍缩到同一点,如图(b)。然后,在最后一层使用图卷积则不同,由于输入由线性可分的转换特征组成,图卷积有助于分类任务。

图卷积的放置
多层网络分类能力的提高取决于卷积的数量,而不取决于卷积放置的位置。对于XOR-CSBM数据模型,在任何组合中在第二层和/或第三层之间放置相同数量的卷积,可以在分类任务中实现与上节相似的改进。
四.实验
本节通过实验证明第四节中的结论。
合成数据集
图卷积的位置并不重要,只要它不在第一层,(a)和(b)表明对于在第二层或第三层中有一个图卷积的所有网络,以及在第二层和第三层之间的任何组合中有两个图卷积的所有网络,性能是相互相似的。
在图是dense的情况下,两个图卷积并不比一个图卷积获得显著的优势。(参见图©和图(d))

真实世界数据集
作者在论文引用网络Cora、Citeseer和Pubmed上进行实验,得到结论为:
- 利用图的网络比不使用关系信息的传统MLP表现得明显更好。
- 在任何层中具有一个图卷积的所有网络都实现了相互相似的性能,并且在任何位置组合中具有两个图卷积的所有网络都实现了相互相似的性能。

相关文章:
《Effects of Graph Convolutions in Multi-layer Networks》阅读笔记
一.文章概述 本文研究了在XOR-CSBM数据模型的多层网络的第一层以上时,图卷积能力的基本极限,并为它们在数据中信号的不同状态下的性能提供了理论保证。在合成数据和真实世界数据上的实验表明a.卷积的数量是决定网络性能的一个更重要的因素,而…...
低代码助力传统制造业数字化转型策略
随着制造强国战略逐步实施,制造行业数字化逐渐进入快车道。提高生产管理的敏捷性、加强产品的全生命周期质量管理是企业数字化转型的核心诉求,也是需要思考的核心价值。就当下传统制造业的核心问题来看,低代码是最佳解决方案,那为…...
什么叫做云计算
什么叫做云计算 相信大多数人对云计算或者是云服务的认识还停留在仅仅听过这个名词,但是对其真正的定义或者意义还不甚了解的层面。甚至有些技术人员,如果日常的业务不涉及到云服务,可能对其也只是一知半解的程度。首先云计算准确的讲只是云服…...
springboot 使用zookeeper实现分布式队列
一.添加ZooKeeper依赖:在pom.xml文件中添加ZooKeeper客户端的依赖项。例如,可以使用Apache Curator作为ZooKeeper客户端库: <dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</…...
地理数据的双重呈现:GIS与数据可视化
前一篇文章带大家了解了GIS与三维GIS的关系,本文就GIS话题带大家一起探讨一下GIS和数据可视化之间的关系。 GIS(地理信息系统)和数据可视化在地理信息科学领域扮演着重要的角色,它们之间密切相关且相互增强。GIS是一种用于采集、…...
Android 13 Media框架(3)- MediaPlayer生命周期
上一节了解了MediaPlayer api的使用,这一节就我们将会了解MediaPlayer的生命周期与api使用细节。 1、MediaPlayer生命周期 MediaPlayer.java 一开始有对生命周期的描述,这里对这些内容进行翻译: MediaPlayer 是线程不安全的,创建…...
[oneAPI] BERT
[oneAPI] BERT BERT训练过程Masked Language Model(MLM)Next Sentence Prediction(NSP)微调 总结基于oneAPI代码 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI&…...
F1-score解析
报错:valueError: Target is multiclass but average‘binary’. Please choose another average setting, one of 原因:使用from sklearn.metrics import f1_score多类别计算F1-score时报错,改函数的参数即可,如:f1_s…...
windows11下配置vscode中c/c++环境
本文默认已经下载且安装好vscode,主要是解决环境变量配置以及编译task、launch文件的问题。 自己尝试过许多博客,最后还是通过这种方法配置成功了。 Linux(ubuntu 20.04)配置vscode可以直接跳转到配置task、launch文件,不需要下载mingw与配…...
Max Sum
一、题目 Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 (-1) 5 4 14. Input The first line of the input contains an integer T(1<T<…...
Field injection is not recommended
文章目录 1. 引言2. 不推荐使用Autowired的原因3. Spring提供了三种主要的依赖注入方式3.1. 构造函数注入(Constructor Injection)3.2. Setter方法注入(Setter Injection)3.3. 字段注入(Field Injection) 4…...
C#字符串占位符替换
using System;namespace myprog {class test{static void Main(string[] args){string str1 string.Format("{0}今年{1}岁,身高{2}cm,月收入{3}元;", "小李", 23, 177, 5000);Console.WriteLine(str1);Console.ReadKey(…...
ChatGPT等人工智能编写文章的内容今后将成为常态
BuzzFeed股价上涨200%可能标志着“转向人工智能”媒体趋势的开始。 周四,一份内部备忘录被华尔街日报透露BuzzFeed正计划使用ChatGPT聊天机器人-风格文本合成技术来自OpenAI,用于创建个性化盘问和将来可能的其他内容。消息传出后,BuzzFeed的…...
【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据)
【Sklearn】基于梯度提升树算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 梯度提升树(Gradient Boosting Trees)是一种集成学习方法,用于解决分类和回归问题。它通过将多个弱学习器(通常…...
什么叫做云计算?
相信大多数人对云计算或者是云服务的认识还停留在仅仅听过这个名词,但是对其真正的定义或者意义还不甚了解的层面。甚至有些技术人员,如果日常的业务不涉及到云服务,可能对其也只是一知半解的程度。首先云计算准确的讲只是云服务中的一部分&a…...
深度学习Batch Normalization
批标准化(Batch Normalization,简称BN)是一种用于深度神经网络的技术,它的主要目的是解决深度学习模型训练过程中的内部协变量偏移问题。简单来说,当我们在训练深度神经网络时,每一层的输入分布都可能会随着…...
el-table实现懒加载(el-table-infinite-scroll)
2023.8.15今天我学习了用el-table对大量的数据进行懒加载。 效果如下: 1.首先安装: npm install --save el-table-infinite-scroll2 2.全局引入: import ElTableInfiniteScroll from "el-table-infinite-scroll";// 懒加载 V…...
vueRouter回顾
关于vueRouter的两种路由模式 “history” 模式使用正常的 URL 格式,例如 https://example.com/path。“hash” 模式将路由信息添加到 URL 的哈希部分(#)后面,例如 https://example.com/#/path。 1、history模式:没有…...
大规模无人机集群算法flocking(蜂群)
matlab2016b正常运行...
【第三阶段】kotlin语言的split
const val INFO"kotlin,java,c,c#" fun main() {//list自动类型推断成listList<String>val listINFO.split(",")//直接输出list集合,不解构println("直接输出list的集合元素:$list")//类比c有解构,ktoli…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
