当前位置: 首页 > news >正文

LoRA(Low-Rank Adaptation)

LoRA(Low-Rank Adaptation)

LoRA(Low-Rank Adaptation)是一种针对深度学习模型的参数调整方法,特别适用于大型预训练模型如GPT-3或BERT。它通过在模型的原有权重上添加低秩(low-rank)矩阵,以有效且资源高效的方式实现模型的微调。

基本原理

LoRA的关键是在模型的现有参数上引入额外的、秩较低的矩阵,从而在不显著增加参数量的情况下提供微调的能力。

公式表示

考虑一个线性层,其原始权重矩阵为 ( W )。LoRA通过以下方式修改该权重矩阵:

W ′ = W + B A W' = W + BA W=W+BA

其中,( W’ ) 是修改后的权重矩阵,( B ) 和 ( A ) 是低秩矩阵,通常比原始权重矩阵 ( W ) 小得多。这种方法允许在不大幅改变原始模型架构的同时,对模型进行有效的调整。

应用示例

假设我们有一个简单的神经网络层,其权重矩阵 ( W ) 的维度为 ( 100 \times 100 )。在应用LoRA时,我们可以引入两个小型矩阵 ( B ) 和 ( A ),每个矩阵的维度可能是 ( 100 \times 10 ) 和 ( 10 \times 100 )。这样,通过训练这两个较小的矩阵,我们能够微调原始的 ( 100 \times 100 ) 权重矩阵,而不需要重新训练所有10000个参数。

优势

LoRA的主要优势在于它能够大幅减少训练中需要更新的参数数量。这在处理像GPT-3这样的大型模型时尤为重要,因为这些模型通常包含数十亿个参数,直接全量训练非常耗时和资源密集。通过使用LoRA,研究人员和开发者能够以更高效的方式对这些大型模型进行定制化调整,以适应特定的应用场景。

代码

import torch
import torch.nn as nnclass LoRALayer(nn.Module):def __init__(self, input_dim, output_dim, rank):super(LoRALayer, self).__init__()self.input_dim = input_dimself.output_dim = output_dimself.rank = rank# 原始权重矩阵self.W = nn.Parameter(torch.randn(output_dim, input_dim))# LoRA矩阵 B 和 Aself.B = nn.Parameter(torch.randn(output_dim, rank))self.A = nn.Parameter(torch.randn(rank, input_dim))def forward(self, x):# 应用LoRA的修改W_prime = self.W + self.B @ self.Areturn torch.matmul(x, W_prime.t())# 示例:创建一个LoRALayer实例
input_dim = 100  # 输入维度
output_dim = 100 # 输出维度
rank = 10       # LoRA矩阵的秩lora_layer = LoRALayer(input_dim, output_dim, rank)# 示例输入
x = torch.randn(1, input_dim)  # 假设的输入数据# 前向传播
output = lora_layer(x)
print(output)

这段代码定义了一个名为 LoRALayer 的类,该类表示一个具有LoRA修改的线性层。它包括原始的权重矩阵 W 和两个低秩矩阵 B 和 A。在前向传播过程中,我们通过 W + B @ A 计算更新后的权重矩阵,然后使用这个更新后的矩阵进行标准的线性层计算。

相关文章:

LoRA(Low-Rank Adaptation)

LoRA(Low-Rank Adaptation) LoRA(Low-Rank Adaptation)是一种针对深度学习模型的参数调整方法,特别适用于大型预训练模型如GPT-3或BERT。它通过在模型的原有权重上添加低秩(low-rank)矩阵&…...

【银行测试】第三方支付功能测试点+贷款常问面试题(详细)

前言 1、第三方支付功能测试点 支付流程: 我们在测试一个功能时,需要先了解一下这个逻辑,而订单支付逻辑普遍都会有以下内容: 1)创建本地唯一订单号; 2)去调用支付,在支付平台生…...

前端:HTML+CSS+JavaScript实现轮播图2

前端:HTMLCSSJavaScript实现轮播图2 1. 和之前版本的区别2. 实现原理3. 针对上述的改进3. 参考代码 1. 和之前版本的区别 之前发布的那篇关于轮播图的文章在这:前端:HTMLCSSJavaScript实现轮播图,只能说存在问题吧!比…...

使用条件格式突出显示单元格数据-sdk

使用条件格式突出显示单元格数据 2023 年 12 月 6 日 根据数据值将视觉提示应用于特定单元格、行或列,从而更轻松地识别模式和趋势。 网格中的条件格式允许用户根据单元格或范围包含的数据将视觉样式应用于单元格或范围。它通过以数据驱动的方式突出显示关键值、异常…...

java面试题-Dubbo和zookeeper运行原理

远离八股文,面试大白话,通俗且易懂 看完后试着用自己的话复述出来。有问题请指出,有需要帮助理解的或者遇到的真实面试题不知道怎么总结的也请评论中写出来,大家一起解决。 java面试题汇总-目录-持续更新中 分布式注册中心和服务调…...

XSS漏洞 深度解析 XSS_labs靶场

XSS漏洞 深度解析 XSS_labs靶场 0x01 简介 XSS原名为Cross-site Sciprting(跨站脚本攻击),因简写与层叠样式表(Cascading style sheets)重名,为了区分所以取名为XSS。 这个漏洞主要存在于HTML页面中进行动态渲染输出的参数中,利用了脚本语…...

C++的左值、右值、左值引用和右值引用

目录 左值和右值左值引用右值引用 参考《现代C语言核心特性解析》 以下加粗文字都是摘自本书。 左值和右值 左值和右值得概念在C98就出现了,根据字面意思理解就是:左值是表达式等号左边的值,右值是表达式等号右边的值。 int x 1; int y …...

罗技鼠标使用接收器和电脑重新配对

罗技鼠标使用接收器和电脑重新配对 文章目录 罗技鼠标使用接收器和电脑重新配对1\. 前言2\. 安装软件3\. 进行配对3.1. 取消之前的配对3.2. 重新配对3.3 配对完成 4\. 报错4.1. 重新配对时显示配对未成功 1. 前言 罗技的鼠标出厂的时候,默认的是将通道一设置为接收…...

高项备考葵花宝典-项目进度管理输入、输出、工具和技术(下,很详细考试必过)

项目进度管理的目标是使项目按时完成。有效的进度管理是项目管理成功的关键之一,进度问题在项目生命周期内引起的冲突最多。 小型项目中,定义活动、排列活动顺序、估算活动持续时间及制定进度模型形成进度计划等过程的联系非常密切,可以视为一…...

GumbleSoftmax感性理解--可导式输出随机类别

GumbleSoftmax 本文不涉及GumbleSoftmax的具体证明和推导,有需要请参见1,只是从感性角度来直观讲解为何要引入GumbleSoftmax,同时又为什么不用Gumblemax。 GumbleSoftmax提出是为了应对分布采样不可导的问题。举例而言,我们从网络…...

ROS gazebo 机器人仿真,环境与robot建模,添加相机 lidar,控制robot运动

b站上有一个非常好的ros教程234仿真之URDF_link标签简介-机器人系统仿真_哔哩哔哩_bilibili,推荐去看原视频。 视频教程的相关文档见:6.7.1 机器人运动控制以及里程计信息显示 Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 本文对视频教程…...

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测

目录 1. 前言 2.人体关键点检测方法 (1)Top-Down(自上而下)方法 (2)Bottom-Up(自下而上)方法: 3.人体关键点检测模型训练 4.人体关键点检测模型Android部署 (1) 将Pytorch模型转换ONNX模型 (2) 将ONNX模型转换…...

踩坑记录:uniapp中scroll-view的scroll-top不生效问题;

情景描述: 最近在uniapp项目中用到scroll-view内置组件,有需求是在页面下拉刷新后,让scroll-view组件区域的显示内容置顶,也就是scroll-view区域的内容恢复不滑动的状态; 补充:下拉刷新操作scroll-view组件…...

YOLOX 学习笔记

文章目录 前言一、YOLOX贡献和改进二、YOLOX架构改进总结 前言 在计算机视觉领域,实时对象检测技术一直是一个热门的研究话题。YOLO(You Only Look Once)系列作为其中的佼佼者,以其高效的检测速度和准确性,广泛应用于…...

第3节:Vue3 v-bind指令

实例&#xff1a; <template><div><button v-bind:disabled"isButtonDisabled">点击我</button></div> </template><script> import { ref } from vue;export default {setup() {const isButtonDisabled ref(false);ret…...

Token 和 N-Gram、Bag-of-Words 模型释义

ChatGPT&#xff08;GPT-3.5&#xff09;和其他大型语言模型&#xff08;Pi、Claude、Bard 等&#xff09;凭何火爆全球&#xff1f;这些语言模型的运作原理是什么&#xff1f;为什么它们在所训练的任务上表现如此出色&#xff1f; 虽然没有人可以给出完整的答案&#xff0c;但…...

【go语言实践】基础篇 - 流程控制

if语句 go里面if不需要括号将条件表达式包含起来&#xff0c;这与python也有点类似 if 条件表达式 { } if num > 18 {// ... } else if num > 20 {// ... } else {// ... }需要注意的是go支持在if的条件表达式中直接定义一个变量&#xff0c;变量的作用域只在if范围内…...

Linux:gdb的简单使用

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《Linux》 文章目录 前言一、前置理解二、使用总结 前言 gdb是Linux中的调试代码的工具 一、前置理解 我们都知道要调试一份代码&#xff0c;这份代码的发布模式必须是debug。那你知道在li…...

NestJS的微服务实现

1.1 基本概念 微服务基本概念&#xff1a;微服务就是将一个项目拆分成多个服务。举个简单的例子&#xff1a;将网站的登录功能可以拆分出来做成一个服务。 微服务分为提供者和消费者&#xff0c;如上“登录服务”就是一个服务提供者&#xff0c;“网站服务器”就是一个服务消…...

Debian 终端Shell命令行长路径改为短路径

需要修改bashrc ~/.bashrc先备份一份 cp .bashrc bashrc.backup编辑bashrc vim ~/.bashrc可以看到bashrc内容为 # ~/.bashrc: executed by bash(1) for non-login shells. # see /usr/share/doc/bash/examples/startup-files (in the package bash-doc) # for examples# If…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...